Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Technol ; 57(9): 3661-3670, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36827231

RESUMEN

The chemistry of technetium (t1/2(99Tc) = 2.11 × 105 years) is of particular importance in the context of nuclear waste disposal and historic contaminated sites. Polycarboxylate ligands may be present in some sites and are potentially capable of strong complexing interactions, thus increasing the solubility and mobility of 99Tc under environmentally relevant conditions. This work aimed to determine the impact of five organic complexing ligands [L = oxalate, phthalate, citrate, nitrilotriacetate (NTA), and ethylenediaminetetraacetate (EDTA)] under anoxic, alkaline conditions (pH ≈ 9-13) on the solubility of technetium. X-ray absorption spectroscopy confirmed that TcO2(am,hyd) remained the solubility-controlling solid phase in undersaturation solubility experiments. Ligands with maximum coordination numbers (CN) ≥ 3 (EDTA, NTA, and citrate) exhibited an increase in solubility from pH 9 to 11, while ligands with CN ≤ 2 (oxalate and phthalate) at all investigated pH and CN ≥ 3 at pH ≈ 13 were outcompeted by hydrolysis reactions. Though most available thermodynamic values were determined under acidic conditions, these models satisfactorily explained high-pH undersaturation solubility of technetium for citrate and NTA, whereas experimental data for Tc(IV)-EDTA were highly overestimated. This work illustrates the predominance of hydrolysis under hyperalkaline conditions and provides experimental support for existing thermodynamic models of Tc-L except Tc-EDTA, which requires further research regarding aqueous speciation and solubility.


Asunto(s)
Ácidos Carboxílicos , Tecnecio , Ácido Edético/química , Tecnecio/química , Solubilidad , Ligandos , Ácidos Carboxílicos/química , Citratos , Oxidación-Reducción
2.
Phys Chem Chem Phys ; 25(3): 1819-1826, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36601876

RESUMEN

The physicochemical properties of a choline chloride (ChCl) and formic acid (FA) mixture (1 : 2 molar ratio) have been studied over a broad range of temperatures (-140 to 60 °C). Differential scanning calorimetry has shown that the examined system remains in the liquid state at very low temperatures - a glass transition is observed in the range of -125 °C to -90 °C. The kinematic viscosity, ionic conductivity and the width of the electrochemical window determined for this system revealed its beneficial electrochemical properties. This indicates the suitability of ChCl : FA electrolytes in electrochemical measurements. In this non-aqueous electrolyte, electrochemical reduction of Tc(VII) ions has been studied for the first time. Cyclic voltammetry and chronopotentiometry experiments revealed that the electroreduction of pertechnetates is a multi-path process which leads to the formation of a Tc(IV) ionic form. X-Ray absorption spectroscopy of the latter revealed its structure as a TcCl62- complex.

3.
J Am Chem Soc ; 144(21): 9217-9221, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35588478

RESUMEN

The ternary neptunium(V) (Np(V)) hydroxides Na0.5[NpO2(OH)1.5]·0.5H2O (I) and Na[NpO2(OH)2] (II) were synthesized in aqueous NaOH solutions at T = 80 °C, and their crystal structures were determined to be monoclinic, P21, Z = 2, a = 5.9859(2), b = 10.1932(3), c = 12.1524(4) Å, ß = 98.864(1)°, V = 732.63(4) Å3 for (I) and orthorhombic, P212121, Z = 4, a = 5.856(7), b = 7.621(9), c = 8.174(9) Å, V = 364.8(7) Å3 for (II). By combining the detailed structural information with results from systematic solubility investigations, a comprehensive chemical and thermodynamic model of the Np(V) behavior in NaCl-NaOH solutions was evaluated. The results reveal a great stability of the ternary Na-Np(V)-OH solid phases that significantly enhances the predominance field of the entire Np(V) redox state to high alkalinity.

4.
Inorg Chem ; 60(16): 12285-12298, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34328309

RESUMEN

The combination of wet-chemistry experiments (measurements of pH, Eh, and [Tc]) and advanced spectroscopic techniques (K- and L3-edge X-ray absorption fine structure spectroscopy) confirms the formation of a very stable Tc(V)-gluconate complex under anoxic conditions. In the presence of gluconate and an excess of Sn(II) (at pe + pH ≈ 2), technetium forms a very stable Tc(IV)-gluconate complex significantly enhancing the solubility defined by TcO2(s) in hyperalkaline gluconate-free systems. A new setup for "tender" X-ray spectroscopy (spectral range, ∼2-5 keV) in transmission or total fluorescence yield detection mode based on a He flow cell has been developed at the INE Beamline for radionuclide science (KIT light source). This setup allows handling of radioactive specimens with total activities up to one million times the exemption limit. For the first time, Tc L3-edge measurements (∼2.677 keV) of Tc species in liquid (aqueous) media are reported, clearly outperforming conventional K-edge spectroscopy as a tool to differentiate Tc oxidation states and coordination environments. The coupling of L3-edge X-ray absorption near-edge spectroscopy measurements and relativistic multireference ab initio methods opens new perspectives in the definition of chemical and thermodynamic models for systems of relevance in the context of nuclear waste disposal, environmental, and pharmaceutical applications.

5.
Inorg Chem ; 59(1): 8-22, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31834788

RESUMEN

Neptunium(V) and uranium(VI) are precipitated from an aqueous potassium-sodium-containing carbonate-rich solution, and the solid phases are investigated. U/Np M4,5-edge high-energy resolution X-ray absorption near edge structure (HR-XANES) spectroscopy and Np 3d4f resonant inelastic X-ray scattering (3d4f RIXS) are applied in combination with thermodynamic calculations, U/Np L3-edge XANES, and extended X-ray absorption fine structure (EXAFS) studies to analyze the local atomic coordination and oxidation states of uranium and neptunium. The XANES/HR-XANES analyses are supported by ab initio quantum-chemical computations with the finite difference method near-edge structure code (FDMNES). The solid precipitates are also investigated with powder X-ray diffraction, scanning electron microscopy-energy dispersive X-ray spectroscopy, and Raman spectroscopy. The results strongly suggest that K[NpVO2CO3](cr), K3[NpVO2(CO3)2](cr), and K3Na[UVIO2(CO3)3](cr) are the predominant neptunium and uranium solid phases formed. Despite the 100 times lower initial neptunium(V) concentration at pH 10.5 and oxic conditions, neptunium(V)-rich phases predominately precipitate. The prevailing formation of neptunium(V) over uranium(VI) solids demonstrates the high structural stability of neptunium(V) carbonates containing potassium. It is illustrated that the Np M5-edge HR-XANES spectra are sensitive to changes of the Np-O axial bond length for neptunyl(V/VI).

6.
Chemosphere ; 350: 141048, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182084

RESUMEN

The complexation of uranyl hydroxides with orthosilicic acid was investigated by experimental and theoretical methods. Spectroluminescence titration was performed in a glovebox under argon atmosphere at pH 9.2, 10.5 and 11.5, with [U(VI)] = 10-6 and 5 × 10-6 mol kgw-1. The polymerization effects of silicic acid were minimized by ruling out samples with less than 90 % monomeric silicic acid present, identified via UV-Vis spectrometry using the molybdate blue method. Linear regression analysis based on time-resolved laser-induced fluorescence spectroscopy (TRLFS) results yielded the conditional stepwise formation constants of U(VI)-OH-Si(OH)4 complexes at 0.05 mol kgw-1 NaNO3. The main spectroscopic features - characteristic peak positions and decay-time - are reported for the first time for the UO2(OH)2SiO(OH)3- species observed at pH 9.2 and 10.5 and UO2(OH)2SiO2(OH)22- predominant at pH 11.5. Quantum chemical calculations successfully computed the theoretical luminescence spectrum of the complex UO2(OH)2SiO(OH)3- species, thus underpinning the proposed chemical model for weakly alkaline systems. The conditional stability constants were extrapolated to infinite dilution using the Davies equation, resulting in log10ß°(UO2(OH)2SiO(OH)3-) and log10ß°(UO2(OH)2SiO2(OH)22-). Implications for U(VI) speciation in the presence and absence of competing carbonate are discussed for silicate-rich environments expected in certain repository concepts for nuclear waste disposal.


Asunto(s)
Dióxido de Silicio , Uranio , Ácido Silícico , Uranio/química , Silicatos/química , Análisis Espectral
7.
Front Chem ; 10: 1042709, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36458154

RESUMEN

The impact of temperature on a freshly precipitated ThO2(am, hyd) solid phase was investigated using a combination of undersaturation solubility experiments and a multi-method approach for the characterization of the solid phase. XRD and EXAFS confirm that ageing of ThO2(am, hyd) at T = 80°C promotes a significant increase of the particle size and crystallinity. TG-DTA and XPS support that the ageing process is accompanied by an important decrease in the number of hydration waters/hydroxide groups in the original amorphous Th(IV) hydrous oxide. However, while clear differences between the structure of freshly precipitated ThO2(am, hyd) and aged samples were observed, the characterization methods used in this work are unable to resolve clear differences between solid phases aged for different time periods or at different pH values. Solubility experiments conducted at T = 22°C with fresh and aged Th(IV) solid phases show a systematic decrease in the solubility of the solid phases aged at T = 80°C. In contrast to the observations gained by solid phase characterization, the ageing time and ageing pH significantly affect the solubility measured at T = 22°C. These observations can be consistently explained considering a solubility control by the outermost surface of the ThO2(s, hyd) solid, which cannot be properly probed by any of the techniques considered in this work. Solubility data are used to derive the thermodynamic properties (log *K°s,0, Δf G°m) of the investigated solid phases, and discussed in terms of particle size using the Schindler equation. These results provide new insights on the interlink between solubility, structure, surface and thermodynamics in the ThO2(s, hyd)-H2O(l) system, with special emphasis on the transformation of the amorphous hydrous/hydroxide solid phases into the thermodynamically stable crystalline oxides.

8.
RSC Adv ; 12(15): 9478-9493, 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35424870

RESUMEN

The impact of calcium on the solubility, redox behavior, and speciation of the An(iii)-EDTA (An = Pu or Cm) system under reducing, anoxic conditions was investigated through batch solubility experiments, X-ray absorption spectroscopy (XAS), density functional theory (DFT), and time-resolved laser fluorescence spectroscopy (TRLFS). Batch solubility experiments were conducted from undersaturation using Pu(OH)3(am) as the solid phase in contact with 0.1 M NaCl-NaOH-HCl-EDTA-CaCl2 solutions at [EDTA] = 1 mM, pHm = 7.5-9.5, and [CaCl2] ≤20 mM. Additional samples targeted brine systems represented by 3.5 M CaCl2 and WIPP simulated brine. Solubility data in the absence of calcium were well-described by Pu(iii)-EDTA thermodynamic models, thus supporting the stabilization of Pu(iii)-EDTA complexes in solution. Cm(iii)-EDTA TRLFS data suggested the stepwise hydrolysis of An(iii)-EDTA complexes with increasing pH, and current Pu(iii)-EDTA solubility models were reassessed to evaluate the possibility of including Pu(iii)-OH-EDTA complexes and to calculate preliminary formation constants. Solubility data in the presence of calcium exhibited nearly constant log m(Pu)tot, as limited by total ligand concentration, with increasing [CaCl2]tot, which supports the formation of calcium-stabilized Pu(iii)-EDTA complexes in solution. XAS spectra without calcium showed partial oxidation of Pu(iii) to Pu(iv) in the aqueous phase, while calcium-containing experiments exhibited only Pu(iii), suggesting that Ca-Pu(iii)-EDTA complexes may stabilize Pu(iii) over short timeframes (t ≤45 days). DFT calculations on the Ca-Pu(iii)-EDTA system and TRLFS studies on the analogous Ca-Cm(iii)-EDTA system show that calcium likely stabilizes An(iii)-EDTA complexes but can also potentially stabilize An(iii)-OH-EDTA species in solution. This hints towards the possible existence of four major complex types within Ca-An(iii)-EDTA systems: An(iii)-EDTA, An(iii)-OH-EDTA, Ca-An(iii)-EDTA, and Ca-An(iii)-OH-EDTA. While the exact stoichiometry and degree of ligand protonation within these complexes remain undefined, their formation must be accounted for to properly assess the fate and transport of plutonium under conditions relevant to nuclear waste disposal.

9.
Environ Sci Technol ; 45(20): 8765-71, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21879756

RESUMEN

Nuclear waste disposal concepts developed worldwide foresee the use of cementitious materials for the immobilization of long-lived intermediate level waste (ILW). This waste form may contain significant amounts of neptunium-237, which is expected to be present as Np(IV) under the reducing conditions encountered after the closure of the repository. Predicting the release of Np(IV) from the cementitious near field of an ILW repository requires a sufficiently detailed understanding of its interaction with the main sorbing components of hardened cement paste (HCP). In this study, the uptake of Np(IV) by calcium silicate hydrates (C-S-H) and HCP has been investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy. The EXAFS studies on Np(IV)-doped C-S-H and HCP samples reveal that Np(IV) is predominantly incorporated in the structure of C-S-H phases having different Ca:Si ratios. The two main species identified correspond to Np(IV) in C-S-H with a Ca:Si mol ratio of 1.65 as in fresh cement and with a Ca:Si mol ratio of 0.75 as in highly degraded cement. The local structure of Np(IV) changes with the Ca:Si mol ratio and does not depend on pH. Furthermore, Np(IV) shows the same coordination environment in C-S-H and HCP samples. This study shows that C-S-H phases are responsible for the Np(IV) uptake by cementitious materials and further that incorporation in the interlayer of the C-S-H structure is the dominant uptake mechanism.


Asunto(s)
Materiales de Construcción/análisis , Neptunio/análisis , Residuos Radiactivos/análisis , Monitoreo del Ambiente , Espectroscopía de Absorción de Rayos X
10.
Sci Total Environ ; 783: 146993, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33866175

RESUMEN

The impact of calcium on the solubility and redox behavior of the Pu(IV)-EDTA system was investigated using a combination of undersaturation solubility studies and advanced spectroscopic techniques. Batch solubility experiments were conducted in 0.1 M NaCl-NaOH-HCl-EDTA-CaCl2 solutions at constant [EDTA] = 1∙10-3 M, 1 ≤ pHm ≤ 11, and 1∙10-3 M ≤ [CaCl2] ≤ 2∙10-2 M. Additional samples targeted brine systems represented by 3.5 M CaCl2 and WIPP simulated brine. Redox conditions were buffered with hydroquinone (pe + pH ≈ 9.5) with selected samples prepared in the absence of any redox buffer. All experiments were performed at T = 22 °C under Ar atmosphere. In-situ X-ray absorption spectroscopy indicated that PuO2(ncr,hyd) was the solubility-controlling phase during the lifetime of all experiments and that aqueous plutonium was present in the +IV oxidation state across all experimental conditions except at pHm ≈ 1, where a small fraction of Pu(III) was also identified. Current thermodynamic models overestimate Pu(IV)-EDTA solubility in the absence of calcium by approximately 1-1.5 log10-units and do not describe the nearly pH-independent, increased solubility observed with increased calcium concentrations. The ternary Pu(IV)-OH-EDTA system without calcium was reevaluated using solubility data obtained in this work and reported in the literature. An updated thermodynamic model including the complexes Pu(OH)(EDTA)-, Pu(OH)2(EDTA)2-, and Pu(OH)3(EDTA)3- was derived. Solubility data collected in the presence of calcium follows a pH-independent trend (log m(Pu)tot vs. pHm), which can only be explained by assuming the formation of a quaternary complex, tentatively defined as CaPu(OH)4(EDTA)2-, in solution. The significant enhancement of plutonium solubility observed in the investigated brine systems supports the formation of a quaternary complex that is not outcompeted by Ca(EDTA)2-, even in concentrated CaCl2 solutions. Although the exact stoichiometry of the complex may need to be revisited, this new quaternary complex has a pronounced impact on plutonium predominance diagrams over a broad range of pH, pe, and calcium concentrations that are relevant to nuclear waste disposal.

11.
J Synchrotron Radiat ; 17(2): 179-86, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20157269

RESUMEN

The mobility, bioavailability and toxicity of mercury in the environment strongly depend on the chemical species in which it is present in soil, sediments, water or air. In mining districts, differences in mobility and bioavailability of mercury mainly arise from the different type of mineralization and ore processing. In this work, synchrotron-based X-ray absorption near-edge spectroscopy (XANES) has been taken advantage of to study the speciation of mercury in geological samples from three of the largest European mercury mining districts: Almadén (Spain), Idria (Slovenia) and Asturias (Spain). XANES has been complemented with a single extraction protocol for the determination of Hg mobility. Ore, calcines, dump material, soil, sediment and suspended particles from the three sites have been considered in the study. In the three sites, rather insoluble sulfide compounds (cinnabar and metacinnabar) were found to predominate. Minor amounts of more soluble mercury compounds (chlorides and sulfates) were also identified in some samples. Single extraction procedures have put forward a strong dependence of the mobility with the concentration of chlorides and sulfates. Differences in efficiency of roasting furnaces from the three sites have been found.


Asunto(s)
Mercurio/química , Contaminantes del Suelo/química , Espectroscopía de Absorción de Rayos X/métodos , Disponibilidad Biológica , Residuos Industriales/análisis , Minería , Eslovenia , España
12.
Chem Rev ; 113(2): 901-43, 2013 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-23369090
13.
Dalton Trans ; 45(44): 17874-17885, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27775147

RESUMEN

The mechanisms for the reduction and uptake of Tc by magnetite (Fe3O4) and mackinawite (FeS) are investigated using X-ray absorption spectroscopy (XANES and EXAFS), in combination with thermodynamic calculations of the Tc/Fe systems and accurate characterization of the solution properties (pHm, pe, [Tc]). Batch sorption experiments were performed under strictly anoxic conditions using freshly prepared magnetite and mackinawite in 0.1 M NaCl solutions with varying initial Tc(vii) concentrations (2 × 10-5 and 2 × 10-4 M) and Tc loadings (400-900 ppm). XANES confirms the complete reduction of Tc(vii) to Tc(iv) in all investigated systems, as predicted from experimental (pHm + pe) measurements and thermodynamic calculations. Two Tc endmember species are identified by EXAFS in the magnetite system, Tc substituting for Fe in the magnetite structure and Tc-Tc dimers sorbed to the magnetite {111} faces through a triple bond. The sorption endmember is favoured at higher [Tc], whereas incorporation prevails at low [Tc] and less alkaline pH conditions. The key role of pH in the uptake mechanism is interpreted in terms of magnetite solubility, with higher [Fe] and greater recrystallization rates occurring at lower pH values. A TcSx-like phase is predominant in all investigated mackinawite systems, although the contribution of up to 20% of TcO2·xH2O(s) (likely as surface precipitate) is observed for the highest investigated loadings (900 ppm). These results provide key inputs for an accurate mechanistic interpretation of the Tc uptake by magnetite and mackinawite, so far controversially discussed in the literature, and represent a highly relevant contribution to the investigation of Tc retention processes in the context of nuclear waste disposal.

14.
Dalton Trans ; 45(21): 8916-36, 2016 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-27152718

RESUMEN

We present the first systematic investigation of Tc(iv) solubility, hydrolysis and speciation in dilute to concentrated NaCl, MgCl2 and CaCl2 systems, and comprehensive thermodynamic and activity models for the system Tc(4+)-H(+)-Na(+)-Mg(2+)-Ca(2+)-OH(-)-Cl(-)-H2O using both SIT and Pitzer approaches. The results are advancing the fundamental scientific understanding of Tc(iv) solution chemistry and are highly relevant in the applied context of nuclear waste disposal. The solubility of Tc(iv) was investigated in carbonate-free NaCl-NaOH (0.1-5.0 M), MgCl2 (0.25-4.5 M) and CaCl2 (0.25-4.5 M) solutions within 2 ≤ pHm≤ 14.5. Undersaturation solubility experiments were performed under an Ar atmosphere at T = 22 ± 2 °C. Strongly reducing conditions (pe + pHm≤ 2) were imposed with Na2S2O4, SnCl2 and Fe powder to stabilize technetium in the +IV redox state. The predominance of Tc(iv) in the aqueous phase was confirmed by solvent extraction and XANES/EXAFS spectroscopy. Solid phase characterization was accomplished after attaining thermodynamic equilibrium using XRD, SEM-EDS, XANES/EXAFS, TG-DTA and quantitative chemical analysis, and indicated that TcO2·0.6H2O(s) exerts solubility-control in all evaluated systems. The definition of the polyatomic Tc3O5(2+) species instead of TcO(2+) is favoured under acidic conditions, consistently with slope analysis (mTcvs. pHm) of the solubility data gained in this work and spectroscopic evidence previously reported in the literature. The additional formation of Tc(iv)-OH/O-Cl aqueous species in concentrated chloride media ([Cl(-)] = 9 M) and pHm≤ 4 is suggested by solubility and EXAFS data. The pH-independent behaviour of the solubility observed under weakly acidic to weakly alkaline pHm conditions can be explained with the equilibrium reaction TcO2·0.6H2O(s) + 0.4H2O(l) ⇔ TcO(OH)2(aq). Solubility data determined in dilute NaCl systems with pHm≥ 11 follow a well-defined slope of +1, consistent with the predominance of TcO(OH)3(-) previously selected by NEA-TDB. In concentrated MgCl2 and CaCl2 solutions with pHm≥ 8, the formation of the ternary Mg3[TcO(OH)5](3+) and Ca3[TcO(OH)5](3+) species is proposed based on the slope analysis of the solubility data, model calculations and previous observations for analogous An(iv) and Zr(iv) systems. The formation and stability of these hitherto unknown Tc(iv) species are supported by DFT calculations. Based on the newly generated experimental data and previous spectroscopic observations, new comprehensive chemical, thermodynamic and activity models (SIT, Pitzer) for these systems are derived.

15.
Environ Sci Technol ; 40(13): 4090-5, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16856721

RESUMEN

Metallurgic calcines with very high mercury and methylmercury content from the Almadén mining district were analyzed by synchrotron-based microprobe techniques. Information about mercury speciation was obtained by micro-EXAFS (microscopic extended X-ray absorption fine structure) spectroscopy, whereas elemental associations were evaluated by micro-XRF (microscopic X-ray fluorescence analysis) mapping. Complementary characterization methodologies, including X-ray diffraction (XRD), inductively coupled plasma-optical spectroscopy (ICP-OES), as well as a sequential extraction scheme (SES), were used to predict the potential availability of mercury. Analysis of total metal content revealed extremely high concentrations of mercury and iron (between 7 and 35 and 65-70 g kg(-1), respectively) and high zinc concentrations (2.2-2.5 g kg(-1)), whereas other metals such as copper, nickel, and lead were found at low concentration levels (30-300 mg kg(-1)). Micro-EXAFS results indicate that cinnabar (HgS(red)) is one of the main species within the studied mercury-rich particles (5-89% of total mercury content), together with more soluble mercury compounds such as Hg3(SO4)02 (schuetteite) and HgO (5-55% of total mercury content). Additionally, element-specific micro-XRF maps of selected mercury-rich particles in the studied samples revealed an evident correlation among Hg-Pb-Ni (and S), indicating a possible geochemical linkage of these elements. Correlations were also found among Fe-Mn and Hg, which have been attributed to sorption of mercury onto oxyhydroxides of Fe and Mn. This finding was supported by results from a sequential extraction scheme, where a significant


Asunto(s)
Residuos Industriales/análisis , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Minería , Monitoreo del Ambiente , Metalurgia , Metales Pesados/análisis , España , Análisis Espectral/métodos , Difracción de Rayos X
16.
J Environ Monit ; 7(8): 771-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16049577

RESUMEN

This manuscript describes the analysis and evaluation of mercury species present in three different types of samples (ore, slag and soil) belonging to the abandoned mining area of Almadén (Spain), by means of X-ray Absorption Spectroscopy (XAS) techniques. The applied methodology includes the analysis of possible interfering compounds by ICP-OES and the characterisation of solid samples by identification of heterogeneities using SEM-EDS technique prior to measurements at the synchrotron facilities (ESRF in Grenoble, France and HASYLAB in Hamburg, Germany) and subsequent analysis of data. Results show that cinnabar is the main species both in ore and soil samples, its concentration ranging from 41 to 77% of the total mercury content. On the other hand, metacinnabar (a polymorph of cinnabar) is shown to be the main species in slag samples (42-88%). Other mercury forms have been found in minor proportions (<30%), such as slightly soluble mercury salts (HgCl(2) and HgSO(4)) and HgO. This is the first time that Almadén-type mercury ores have been characterised by a synchrotron-based spectroscopic technique for a direct determination of mercury species. The conclusions presented in this report show the important similarities between Almadén and hot-spring type mercury mineral deposits, despite its different geological origin.


Asunto(s)
Monitoreo del Ambiente/métodos , Compuestos de Mercurio/análisis , Minería , Contaminantes del Suelo/análisis , Residuos Industriales/análisis , Mercurio , España , Análisis Espectral , Rayos X
17.
Anal Bioanal Chem ; 382(7): 1541-8, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15971043

RESUMEN

The present work studies the adsorption behaviour of mercury species on different soil components (montmorillonite, kaolinite and humic acid) spiked with CH3HgCl and CH3HgOH at different pH values, by using XAS techniques and bacterial mercury sensors in order to evaluate the availability of methyl mercury on soil components. The study details and discusses different aspects of the adsorption process, including sample preparation (with analysis of adsorbed methyl mercury by ICP-OES), the various adsorption conditions, and the characterization of spiked samples by XAS techniques performed at two synchrotron facilities (ESRF in Grenoble, France and HASYLAB in Hamburg, Germany), as well as bioavailability studies using mercury-specific sensor bacteria. Results show that XAS is a valuable qualitative technique that can be used to identify the bonding character of the Hg in mercury environment. The amount of methyl in mercury adsorbed to montmorillonite was pH-dependent while for all soil components studied, the bond character was not affected by pH. On the other hand, clays exhibited more ionic bonding character than humic acids did with methyl mercury. This interaction has a higher covalent character and so it is more stable for CH3HgOH than for CH3HgCl, due to the higher reactivity of the hydroxyl group arising from the possible formation of hydrogen bonds. The bioavailability of methyl mercury adsorbed to montmorillonite, kaolinite and humic acids was measured using recombinant luminescent sensor bacterium Escherichia coli MC1061 (pmerBR(BS)luc). In case of contact exposure (suspension assays), the results showed that the bioavailability was higher than it was for exposure to particle-free extracts prepared from these suspensions. The highest bioavailability of methyl mercury was found in suspensions of montmorillonite (about 50% of the total amount), while the bioavailabilities of kaolinite and humic acids were five times lower (about 10%). The behaviour of methyl mercury in the presence of montmorillonite could be explained by the more ionic bonding character of this system, in contrast to the more covalent bonding character observed for humic acids. Thus, XAS techniques seem to provide promising tools for investigating the mechanisms behind the observed bioavailabilities of metals in various environmental matrices, an important topic in environmental toxicology.


Asunto(s)
Técnicas Biosensibles/métodos , Escherichia coli , Compuestos de Metilmercurio/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Adsorción , Bentonita/química , Escherichia coli/metabolismo , Sustancias Húmicas/análisis , Caolín/química , Mediciones Luminiscentes , Análisis Espectral , Rayos X
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda