Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Scand J Med Sci Sports ; 34(9): e14716, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39238211

RESUMEN

Motor imagery (MI) is the mental representation of a movement without its execution. It activates internal representations of the movement without external stimulus through different memory-related processes. Although acute stress is frequent in the population and affects supraspinal structures essential for memory functionality, it is still unknown how that stress affects MI capacity and temporal congruence (TC) between execution and movement imagination. This study aimed to discover how acute stress may influence MI capacity and TC in the subscales of internal and external visual imagery and kinesthetic imagery. A double-blind, randomized trial was conducted. Sixty-two young, healthy subjects (mean age = 20.65 [2.54]; 39 females and 23 males) unfamiliar with the assessment and uses of MI were recruited. Participants were assigned by stratified randomization to the stress group or the control group. Stress was induced by the Maastricht Acute Stress Test (MAST), while the control group performed the MAST control protocol. MI capacity and TC were assessed before (t1) and after (t2) MAST stress or control using the Movement Imagery Questionnaire-3 (MIQ-3). Electrodermal activity and heart rate variability were further recorded as control variables to assess stress induction. Thirty subjects in the stress group and 26 subjects in the control group were analyzed. No significant group differences were observed when comparing MI capacity or TC in any subscales. These findings suggest that acute stress does not significantly affect MI capacity or TC in young, healthy, non-experienced MI subjects. MI could thus be a relevant helpful technique in stressful situations.


Asunto(s)
Frecuencia Cardíaca , Imaginación , Estrés Psicológico , Humanos , Femenino , Masculino , Adulto Joven , Método Doble Ciego , Imaginación/fisiología , Frecuencia Cardíaca/fisiología , Movimiento/fisiología , Respuesta Galvánica de la Piel/fisiología , Adulto , Adolescente , Cinestesia/fisiología , Encuestas y Cuestionarios
2.
Sensors (Basel) ; 23(20)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37896739

RESUMEN

Demographic changes and an ageing population require more effective methods to confront the increased prevalence of chronic diseases which generate dependence in older adults as well as an important rise in social expenditure. The challenge is not only to increase life expectancy, but also to ensure that the older adults can fully enjoy that moment in their lives, living where they wish to (private home, nursing home, …). Physical activity (PA) is a representative parameter of a person's state of health, especially when we are getting older, because it plays an important role in the prevention of diseases, and that is the reason why it is promoted in older adults. One of the goals of this work is to assess the feasibility of objectively measuring the PA levels of older adults wherever they live. In addition, this work proposes long-term monitoring that helps to gather daily activity patterns. We fuse inertial measurements with other technologies (WiFi- and ultrasonic-based location) in order to provide not only PA, but also information about the place where the activities are carried out, including both room-level location and precise positioning (depending on the technology used). With this information, we would be able to generate information about the person's daily routines which can be very useful for the early detection of physical or cognitive impairment.


Asunto(s)
Envejecimiento , Casas de Salud , Humanos , Anciano , Ejercicio Físico
3.
Sensors (Basel) ; 21(21)2021 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-34770358

RESUMEN

Ultrasonic local positioning systems (ULPS) have been brought to the attention of researchers as one of the possibilities that can be used for indoor localization. Acoustic systems combine a suitable trade-off between precision, ease of development, and cost. This work proposes a method for measuring the time of arrival of encoded emissions from a set of ultrasonic beacons, which are used to implement an accurate ULPS. This method uses the generalized cross-correlation technique with PHAT filter and weighting factor ß (GCC-PHAT-ß). To improve the performance of the GCC-PHAT-ß in encoded emission detection, the employment is proposed of mixed-medium multiple-access techniques, based on code division and time division multiplexing of beacon emissions (CDMA and TDMA respectively), and to dynamically adjust the PHAT filter weighting factor. The receiver position is obtained by hyperbolic multilateration from the time differences of arrival (TDoA) between a reference beacon and the rest, thus avoiding the need for receiver synchronization. The results show how the dynamic adaptation of the weighting factor significantly reduces positioning errors from 20 cm to 2 cm in 80% of measurements. The simulated and real experiments prove that the proposed algorithms improve the performance of the ULPS in situations with lower signal-to-noise ratios (SNR) than 0 dB and in environments where the multipath effect makes it difficult to correctly detect the encoded ultrasonic emissions.

4.
Sensors (Basel) ; 20(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272805

RESUMEN

All non-foot-mounted inertial localization systems have a common challenge: the need for calibrating the parameters of the step length model. The calibration of the parameters of a step length model is key for an accurate estimation of the pedestrian's step length, and therefore, for the accuracy of the position estimation. In a previous work, we provided a proof of concept on how to calibrate step length models with a foot inertial navigation system (INS), i.e., an INS based on an inertial measurement unit (IMU) mounted on the upper front part of the foot. The reason is that the foot INS does not require calibration thanks to the implementation of the strapdown algorithm. The goal of this article is to automatically calibrate the parameters of a step length model of the pocket INS by means of the foot INS. The step length model of the pocket INS has two parameters: the slope and offset of a first-order linear regression that relates the amplitude of the thigh pitch with the user's step length. Firstly, we show that it is necessary to estimate the two parameters of the step length model. Secondly, we propose a method to automatically estimate these parameters by means of a foot INS. Finally, we propose a practical implementation of the proposed method in the pocket INS. We evaluate the pocket INS with the proposed calibration method and we compare the results to the state of the art implementations of the pocket INS. The results show that the proposed automatic calibration method outperforms the previous work, which proves the need for calibrating all the parameters of the step length model of the pocket INS. In this work, we conclude that it is possible to use a foot INS to automatically calibrate all parameters of the step length model of the pocket INS. Since the calibration of the step length model is always needed, our proposed automatic calibration method is a key enabler for using the pocket INS.


Asunto(s)
Pie/fisiología , Caminata , Automatización , Calibración , Humanos , Modelos Teóricos , Caminata/normas , Dispositivos Electrónicos Vestibles/normas
5.
Sensors (Basel) ; 20(18)2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32962170

RESUMEN

In this article, we present a novel tight coupling inertial localization system which simultaneously processes the measurements of two inertial measurement units (IMUs) mounted on the leg, namely the upper thigh and the front part of the foot. Moreover, the proposed system exploits motion constraints of each leg link; that is, the thigh and the foot. To derive these constraints, we carry out a motion tracking experiment to collect both ground truth data and inertial measurements from IMUs mounted on the leg. The performance of the tight coupling system is assessed with a data set of approximately 10 h. The evaluation shows that the average 2D-position error of the proposed tight coupling system is at least 50% better than the average 2D-position error of two state-of-the-art systems, whereas the average height error of the tight coupling system is at least 75% better than the average height error of the two state-of-the-art systems. In this work, we improve the accuracy of the position estimation by introducing biomechanical constraints in an inertial localization system. This article allows to observe, for the first time, heading errors of an inertial localization system by using only inertial measurements and without the need for using maps or repeating totally or partially the walked trajectory.


Asunto(s)
Peatones , Caminata , Fenómenos Biomecánicos , Pie , Cabeza , Humanos , Movimiento (Física)
6.
Sensors (Basel) ; 17(4)2017 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-28398232

RESUMEN

An accurate orientation is crucial to a satisfactory position in pedestrian navigation. The orientation estimation, however, is greatly affected by errors like the biases of gyroscopes. In order to minimize the error in the orientation, the biases of gyroscopes must be estimated and subtracted. In the state of the art it has been proposed, but not proved, that the estimation of the biases can be accomplished using magnetic field measurements. The objective of this work is to evaluate the effectiveness of using magnetic field measurements to estimate the biases of medium-cost micro-electromechanical sensors (MEMS) gyroscopes. We carry out the evaluation with experiments that cover both, quasi-error-free turn rate and magnetic measurements and medium-cost MEMS turn rate and magnetic measurements. The impact of different homogeneous magnetic field distributions and magnetically perturbed environments is analyzed. Additionally, the effect of the successful biases subtraction on the orientation and the estimated trajectory is detailed. Our results show that the use of magnetic field measurements is beneficial to the correct biases estimation. Further, we show that different magnetic field distributions affect differently the biases estimation process. Moreover, the biases are likewise correctly estimated under perturbed magnetic fields. However, for indoor and urban scenarios the biases estimation process is very slow.

7.
Sci Data ; 9(1): 266, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35661743

RESUMEN

This document introduces the PHYTMO database, which contains data from physical therapies recorded with inertial sensors, including information from an optical reference system. PHYTMO includes the recording of 30 volunteers, aged between 20 and 70 years old. A total amount of 6 exercises and 3 gait variations were recorded. The volunteers performed two series with a minimum of 8 repetitions in each one. PHYTMO includes magneto-inertial data, together with a highly accurate location and orientation in the 3D space provided by the optical system. The files were stored in CSV format to ensure its usability. The aim of this dataset is the availability of data for two main purposes: the analysis of techniques for the identification and evaluation of exercises using inertial sensors and the validation of inertial sensor-based algorithms for human motion monitoring. Furthermore, the database stores enough data to apply Machine Learning-based algorithms. The participants' age range is large enough to establish age-based metrics for the exercises evaluation or the study of differences in motions between different groups.


Asunto(s)
Ejercicio Físico , Modalidades de Fisioterapia , Dispositivos Electrónicos Vestibles , Adulto , Anciano , Algoritmos , Bases de Datos Factuales , Marcha , Humanos , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda