Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS Pathog ; 17(3): e1009337, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33651853

RESUMEN

The establishment of type 2 responses driven by allergic sensitization prior to exposure to helminth parasites has demonstrated how tissue-specific responses can protect against migrating larval stages, but, as a consequence, allow for immune-mediated, parasite/allergy-associated morbidity. In this way, whether helminth cross-reacting allergen-specific antibodies are produced and play a role during the helminth infection, or exacerbate the allergic outcome awaits elucidation. Thus, the main objective of the study was to investigate whether house dust mite (HDM) sensitization triggers allergen-specific antibodies that interact with Ascaris antigens and mediate antibody-dependent deleterious effects on these parasites as well as, to assess the capacity of cross-reactive helminth proteins to trigger allergic inflammation in house dust mite presensitized mice. Here, we show that the sensitization with HDM-extract drives marked IgE and IgG1 antibody responses that cross-react with Ascaris larval antigens. Proteomic analysis of Ascaris larval antigens recognized by these HDM-specific antibodies identified Ascaris tropomyosin and enolase as the 2 major HDM homologues based on high sequence and structural similarity. Moreover, the helminth tropomyosin could drive Type-2 associated pulmonary inflammation similar to HDM following HDM tropomyosin sensitization. The HDM-triggered IgE cross-reactive antibodies were found to be functional as they mediated immediate hypersensitivity responses in skin testing. Finally, we demonstrated that HDM sensitization in either B cells or FcγRIII alpha-chain deficient mice indicated that the allergen driven cell-mediated larval killing is not antibody-dependent. Taken together, our data suggest that aeroallergen sensitization drives helminth reactive antibodies through molecular and structural similarity between HDM and Ascaris antigens suggesting that cross-reactive immune responses help drive allergic inflammation.


Asunto(s)
Polvo/inmunología , Hipersensibilidad/inmunología , Pyroglyphidae/inmunología , Animales , Antígenos Dermatofagoides/inmunología , Proteínas del Helminto/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Ratones , Proteómica
2.
PLoS Pathog ; 17(11): e1010067, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34784389

RESUMEN

Human ascariasis is the most prevalent but neglected tropical disease in the world, affecting approximately 450 million people. The initial phase of Ascaris infection is marked by larval migration from the host's organs, causing mechanical injuries followed by an intense local inflammatory response, which is characterized mainly by neutrophil and eosinophil infiltration, especially in the lungs. During the pulmonary phase, the lesions induced by larval migration and excessive immune responses contribute to tissue remodeling marked by fibrosis and lung dysfunction. In this study, we investigated the relationship between SIgA levels and eosinophils. We found that TLR2 and TLR4 signaling induces eosinophils and promotes SIgA production during Ascaris suum infection. Therefore, control of parasite burden during the pulmonary phase of ascariasis involves eosinophil influx and subsequent promotion of SIgA levels. In addition, we also demonstrate that eosinophils also participate in the process of tissue remodeling after lung injury caused by larval migration, contributing to pulmonary fibrosis and dysfunction in re-infected mice. In conclusion, we postulate that eosinophils play a central role in mediating host innate and humoral immune responses by controlling parasite burden, tissue inflammation, and remodeling during Ascaris suum infection. Furthermore, we suggest that the use of probiotics can induce eosinophilia and SIgA production and contribute to controlling parasite burden and morbidity of helminthic diseases with pulmonary cycles.


Asunto(s)
Ascariasis/inmunología , Ascaris suum/inmunología , Eosinófilos/fisiología , Inmunoglobulina A Secretora/metabolismo , Neumonía/prevención & control , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Ascariasis/metabolismo , Ascariasis/parasitología , Femenino , Inmunoglobulina A Secretora/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neumonía/inmunología , Neumonía/parasitología , Receptor Toll-Like 2/genética , Receptor Toll-Like 4/genética
3.
Exp Parasitol ; 238: 108267, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35550886

RESUMEN

BACKGROUND: Human ascariasis is one of the most prevalent neglected tropical diseases worldwide. The immune response during human ascariasis is characterized by Th2 polarization and a mixed Th2/Th17 response during the pathogenesis of experimental larval ascariasis. Cytokines and other pro-inflammatory mediators, such as nitric oxide (NO), are involved in helminthic infections. However, the role of NO in ascariasis remains unclear. OBJECTIVES: Given the importance of NO in inflammation, we aimed to determine the immunological and histopathological alterations in the livers of C57BL/6 iNOS-/- mice during A. suum infection. METHODS: In this study, parasitic load was evaluated in the livers of wild type C57BL/6 and C57BL/6 iNOS-/- mice infected with A. suum. Histopathological and morphometric analyses and analysis of serum cytokines via Cytometric Bead Array were performed, and the activity of eosinophil peroxidase and myeloperoxidase of neutrophils in the tissues were determined. RESULTS: The results showed that NO is important for controlling parasitic load during infection by A. suum. C57BL/6iNOS-/- mice showed reduced inflammatory processes and less tissue damage during liver larval migration of A. suum, which is associated with a reduction in serum levels of pro-inflammatory cytokines. CONCLUSIONS: We demonstrated that NO is a crucial inflammatory molecule during Ascaris sp. infection and controls the establishment of the parasite and the development of the host immune response in the liver.


Asunto(s)
Ascariasis , Ascaris suum , Parásitos , Animales , Ascariasis/parasitología , Citocinas , Inflamación , Hígado/parasitología , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico
4.
Parasitology ; 148(14): 1795-1805, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-35586777

RESUMEN

Ascariasis is the most prevalent helminth infection in the world and leads to significant, life-long morbidity, particularly in young children. Current efforts to control and eradicate ascariasis in endemic regions have been met with significant challenges including high-rates of re-infection and potential development of anthelminthic drug resistance. Vaccines against ascariasis are a key tool that could break the transmission cycle and lead to disease eradication globally. Evolution of the Ascaris vaccine pipeline has progressed, however no vaccine product has been brought to human clinical trials to date. Advancement in recombinant protein technology may provide the first step in generating an Ascaris vaccine as well as a pan-helminthic vaccine ready for human trials. However, several roadblocks remain and investment in new technologies will be important to develop a successful human Ascaris vaccine that is critically needed to prevent significant morbidity in Ascaris-endemic regions around the world.


Asunto(s)
Ascariasis , Desarrollo de Vacunas , Vacunas , Animales , Ascariasis/prevención & control , Ascaris , Humanos
5.
Parasitology ; : 1-10, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33843506

RESUMEN

Human ascariasis is the most common and prevalent neglected tropical disease and is estimated that ~819 million people are infected around the globe, accounting for 0.861 million years of disability-adjusted life years in 2017. Even with the existence of highly effective drugs, the constant presence of infective parasite eggs in the environment contribute to a high reinfection rate after treatment. Due to its high prevalence and broad geographic distribution Ascaris infection is associated with a variety of co-morbidities and co-infections. Here, we provide data from both experimental models and humans studies that illustrate how complex is the interaction of Ascaris with the host immune system, especially, in the context of reinfections, co-infections and associated co-morbidities.

6.
J Immunol ; 197(7): 2772-9, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27566825

RESUMEN

Among the various hypotheses put forward to explain the modulatory influence of helminth infection on allergic effector responses in humans, the IL-10-induced suppression of Th2-associated responses has been the leading candidate. To explore this helminth/allergy interaction more fully, parasite- and allergen-specific CD4(+) T cell responses in 12 subjects with filarial infections, and coincident allergic sensitization (filarial [Fil](+)allergy [A](+)) were compared with the responses to three appropriate control groups (Fil(-)A(-) [n = 13], Fil(-)A(+) [n = 12], Fil(+)A(-) [n = 11]). The most important findings revealed that Fil(+)A(+) had marked (p < 0.0001 for all cytokines) increases in parasite Ag-driven Th2 (IL-4, IL-5, IL-13), Th9 (IL-9), and the regulatory (IL-10) cytokines when compared with Fil(+)A(-) Moreover, using multiparameter flow cytometry, filarial parasite Ag induced a marked increase in not only the frequency of CD4(+) T cells producing IL-4, IL-5, IL-2, and TNF-α in Fil(+)A(+) when compared with Fil(+)A(-) patients, but also in the frequencies of polyfunctional Th2-like (CD4(+)IL-4(+)IL-5(+) and CD4(+)IL-2(+)IL-4(+)IL-5(+)TNF-α(+)) cells. The Th2-associated responses seen in the Fil(+)A(+) group were correlated with serum IgE levels (p < 0.01, r = 0.5165 for IL-4; p < 0.001, r = 0.5544 for IL-5; and p < 0.001, r = 0.4901 for IL-13) and levels of circulating eosinophils (p < 0.0116, r = 0.5656) and their degranulation/activation products (major basic protein [p < 0.001, r = 0.7353] and eosinophil-derived neurotoxin [p < 0.01, r = 0.7059]). CD4(+) responses to allergen were not different (to a large extent) among the groups. Taken together, our data suggest that allergic sensitization coincident with filarial infection drives parasite Ag-specific T cell hyperresponsiveness, which is characterized largely by an augmented Th2-dominated immune response.


Asunto(s)
Alérgenos/inmunología , Antígenos de Protozoos/inmunología , Linfocitos T CD4-Positivos/inmunología , Filariasis/inmunología , Células Cultivadas , Humanos
7.
BMC Infect Dis ; 17(1): 253, 2017 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-28390393

RESUMEN

BACKGROUND: While the macrophage polarization is well characterized in helminth infections, the natural heterogeneity of monocytes with multiple cell phenotypes might influence the outcome of neglected diseases, such hookworm infection. Here, we report the profile of monocytes in human hookworm infections as a model to study the regulatory subpopulation of monocytes in helminth infections. METHODS: Blood samples were collected from 19 Necator americanus-infected individuals and 13 healthy individuals. Peripheral blood mononuclear cells (PBMCs) were isolated, and immunophenotyping was conducted by flow cytometry. The expressions of genes encoding human nitric oxide synthase (iNOS), interleukin 4 (IL-4), arginase-1 (Arg-1) and glyceraldehyde 3-phosphate dehydrogenase were quantified by qPCR. Plasma levels of IL-4 were determined by sandwich ELISA. Unpaired t-tests or Mann-Whitney tests were used depending on the data distribution. RESULTS: Hookworm infected individuals (HWI) showed a significant increase in the number of monocytes/mm3 (555.2 ± 191.0) compared to that of the non-infected (NI) individuals (120.4 ± 44.7) (p < 0.0001). While the frequencies of CD14+IL-10+ and CD14+IL-12+ cells were significantly reduced in the HWI compared to NI group (p = 0.0289 and p < 0.0001, respectively), the ratio between IL-10/IL-12 producing monocytes was significantly elevated in HWI (p = 0.0004), indicating the potential regulatory activity of these cells. Measurement of IL-4 levels and gene expression of IL-4 and Arg-1 (highly expressed in alternatively activated macrophages) revealed no significant differences between the NI and HWI groups. Interestingly, individuals from the HWI group had higher expression of the iNOS gene (associated with a regulatory profile) (20.27 ± 2.97) compared to the NI group (11.28 ± 1.18, p = 0.0409). Finally, individuals from the HWI group had a significantly higher frequency of CD206+CD23+IL-10+ (7.57 ± 1.96) cells compared to individuals from the NI group (0.35 ± 0.09) (p < 0.001), suggesting that activated monocytes are a potential source of regulatory cytokines during hookworm infection. CONCLUSIONS: Natural hookworm infection induces a high frequency of circulating monocytes that present a regulatory profile and promote the downmodulation of the proinflammatory response, which may contribute to prolonged survival of the parasite in the host.


Asunto(s)
Infecciones por Uncinaria/inmunología , Monocitos/inmunología , Adulto , Anciano , Animales , Arginasa/genética , Citocinas/metabolismo , Femenino , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Humanos , Inmunofenotipificación , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-4/metabolismo , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Óxido Nítrico Sintasa de Tipo II/genética , Fragmentos de Péptidos/genética
8.
Trop Med Int Health ; 20(12): 1787-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26426162

RESUMEN

OBJECTIVES: To identify immunodominant antigens of Toxocara canis recognised by Toxocara-infected sera as recombinant reagents for immunodiagnosis of toxocariasis. METHODS: Pooled sera from human cases of toxocariasis were used to identify immunodominant antigens by immunoscreening a T. canis larval expression cDNA library. The positive clones were sequenced to reveal the identity of the antigens. The recombinant proteins were expressed in E. coli and then used to confirm their immunoreaction with sera of humans with toxocariasis. Two chosen antigens were also used to differentiate Toxocara infection from other helminth infections in mice. RESULTS: Eleven antigens with immunodiagnostic potential were identified, including two C-type lectins (CTLs) that reacted strongly with the Toxocara-positive serum pool. The first CTL (Tc-CTL-1) is the same as TES-32, previously identified as a major immunodominant component of TES; the second CTL (Tc-CTL-2) is a novel C-type lectin sharing 83% amino acid sequence identity within the functional domain of Tc-CTL-1. The E. coli-expressed recombinant Tc-CTL-1 was strongly recognised by the Toxocara-positive serum pool or sera from animals experimentally infected with T. canis. Reactivity with recombinant Tc-CTL-1 was higher when the unreduced protein was used in an enzyme-linked immunosorbent assay (ELISA), dot-blot assay or Western blot test compared to the protein under reduced condition. Both recombinant Tc-CTL-1- and Tc-CTL-2-based ELISAs were able to differentiate T. canis infection from other helminth infections in experimentally infected mice. CONCLUSIONS: Both Tc-CTL-1 and Tc-CTL-2 were able to differentiate Toxocara infection from other helminth infections and could potentially be used as sensitive and specific immunodiagnostic antigens.


Asunto(s)
Antígenos Helmínticos/inmunología , Epítopos Inmunodominantes , Toxocara canis/inmunología , Toxocariasis/diagnóstico , Secuencia de Aminoácidos , Animales , Anticuerpos Antihelmínticos/sangre , Western Blotting , Técnicas de Laboratorio Clínico , ADN Complementario , Ensayo de Inmunoadsorción Enzimática , Escherichia coli , Helmintiasis/diagnóstico , Helmintiasis/inmunología , Humanos , Larva , Lectinas/inmunología , Ratones Endogámicos C57BL , Proteínas Recombinantes/inmunología , Toxocariasis/inmunología
9.
Malar J ; 14: 5, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25559491

RESUMEN

BACKGROUND: Reduction in the number of circulating blood lymphocytes (lymphocytopaenia) has been reported during clinical episodes of malaria and is normalized after treatment with anti-malaria drugs. While this phenomenon is well established in malaria infection, the underlying mechanisms are still not fully elucidated. In the present study, the occurrence of apoptosis and its pathways in CD4+ T cells was investigated in naturally Plasmodium vivax-infected individuals from a Brazilian endemic area (Porto Velho - RO). METHODS: Blood samples were collected from P. vivax-infected individuals and healthy donors. The apoptosis was characterized by cell staining with Annexin V/FITC and propidium iodide and the apoptosis-associated gene expression profile was carried out using RT2 Profiler PCR Array-Human Apoptosis. The plasma TNF level was determined by ELISA. The unpaired t-test or Mann-Whitney test was applied according to the data distribution. RESULTS: Plasmodium vivax-infected individuals present low number of leukocytes and lymphocytes with a higher percentage of CD4+ T cells in early and/or late apoptosis. Increased gene expression was observed for TNFRSF1B and Bid, associated with a reduction of Bcl-2, in individuals with P. vivax malaria. Furthermore, these individuals showed increased plasma levels of TNF compared to malaria-naive donors. CONCLUSIONS: The results of the present study suggest that P. vivax infection induces apoptosis of CD4+ T cells mediated by two types of signaling: by activation of the TNFR1 death receptor (extrinsic pathway), which is amplified by Bid, and by decreased expression of the anti-apoptotic protein Bcl-2 (intrinsic pathway). The T lymphocytes apoptosis could reflect a strategy of immune evasion triggered by the parasite, enabling their persistence but also limiting the occurrence of immunopathology.


Asunto(s)
Apoptosis , Linfocitos T CD4-Positivos/fisiología , Interacciones Huésped-Patógeno , Malaria Vivax/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/biosíntesis , Receptores Tipo I de Factores de Necrosis Tumoral/biosíntesis , Adulto , Brasil , Técnicas Citológicas , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal , Adulto Joven
10.
BMC Infect Dis ; 15: 35, 2015 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-25636730

RESUMEN

BACKGROUND: For a long time, the role of CD8(+) T cells in blood-stage malaria was not considered important because erythrocytes do not express major histocompatibility complex (MHC) class I proteins. While recent evidences suggest that CD8(+) T cells may play an important role during the erythrocytic phase of infection by eliminating parasites, CD8(+) T cells might also contribute to modulate the host response through production of regulatory cytokines. Thus, the role of CD8(+) T cells during blood-stage malaria is unclear. Here, we report the phenotypic profiling of CD8(+) T cells subsets from patients with uncomplicated symptomatic P. vivax malaria. METHODS: Blood samples were collected from 20 Plasmodium vivax-infected individuals and 12 healthy individuals. Immunophenotyping was conducted by flow cytometry. Plasma levels of IFN-γ, TNF-α and IL-10 were determined by ELISA/CBA. Unpaired t-test or Mann-Whitney test was used depending on the data distribution. RESULTS: P. vivax-infected subjects had lower percentages and absolute numbers of CD8(+)CD45RA(+) and CD8(+)CD45RO(+) T cells when compared to uninfected individuals (p ≤ 0.0002). A significantly lower absolute number of circulating CD8(+)CD45(+)CCR7(+) cells (p = 0.002) was observed in P. vivax-infected individuals indicating that infection reduces the number of central memory T cells. Cytokine expression was significantly reduced in the naïve T cells from infected individuals compared with negative controls, as shown by lower numbers of IFN-γ(+) (p = 0.001), TNF-α(+) (p < 0.0001) and IL-10(+) (p < 0.0001) CD8(+) T cells. Despite the reduction in the number of CD8(+) memory T cells producing IFN-γ (p < 0.0001), P. vivax-infected individuals demonstrated a significant increase in memory CD8(+)TNF-α(+) (p = 0.016) and CD8(+)IL-10(+) (p = 0.004) cells. Positive correlations were observed between absolute numbers of CD8(+)IL-10(+) and numbers of CD8(+)IFN-γ(+) (p < 0.001) and CD8(+)TNF-α(+) T cells (p ≤ 0.0001). Finally, an increase in the plasma levels of TNF-α (p = 0.017) and IL-10 (p = 0.006) and a decrease in the IFN-γ plasma level (p <0.0001) were observed in the P. vivax-infected individuals. CONCLUSIONS: P. vivax infection reduces the numbers of different subsets of CD8(+) T cells, particularly the memory cells, during blood-stage of infection and enhances the number of CD8(+) memory T cells expressing IL-10, which positively correlates with the number of cells expressing TNF-α and IFN-γ.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Malaria Vivax/inmunología , Plasmodium vivax/inmunología , Adulto , Anciano , Recuento de Células Sanguíneas , Estudios de Casos y Controles , Femenino , Citometría de Flujo , Humanos , Malaria Vivax/sangre , Masculino , Persona de Mediana Edad , Fenotipo , Adulto Joven
11.
Curr Protoc ; 4(6): e1074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38923794

RESUMEN

Ascariasis, caused by both Ascaris lumbricoides and Ascaris suum, is the most prevalent parasitic disease worldwide, affecting both human and porcine populations. However, due to the difficulties of assessing the early events of infection in humans, most studies of human ascariasis have been restricted to the chronic intestinal phase. Therefore, the Ascaris mouse model has become a fundamental tool for investigating the immunobiology and pathogenesis of the early infection stage referred to as larval ascariasis because of the model's practicality and ability to replicate the natural processes involved. The Ascaris mouse model has been widely used to explore factors such as infection resistance/susceptibility, liver inflammation, lung immune-mediated pathology, and co-infections and, notably, as a pivotal element in preclinical vaccine trials. Exploring the immunobiology of larval ascariasis may offer new insights into disease development and provide a substantial understanding of key components that trigger a protective immune response. This article focuses on creating a comprehensive guide for conducting Ascaris experimental infections in the laboratory as a foundation for future research efforts. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Acquisition and embryonation of Ascaris suum eggs from adult females Alternate Protocol: Cleaning and purification of Ascaris suum from female A. suum uteri Basic Protocol 2: Preparation of Ascaris suum eggs and murine infection Basic Protocol 3: Measurement of larval burden and Ascaris-larva-induced pathogenesis Basic Protocol 4: In vitro hatching and purification of Ascaris L3 larvae Support Protocol: Preparation of crude antigen from Ascaris infectious stages Basic Protocol 5: Ultrastructure-expansion microscopy (U-ExM) of Ascaris suum larval stages.


Asunto(s)
Ascariasis , Ascaris suum , Modelos Animales de Enfermedad , Larva , Ascariasis/parasitología , Ascariasis/inmunología , Animales , Ratones , Ascaris suum/inmunología , Larva/inmunología , Femenino , Ascaris/inmunología , Ascaris/patogenicidad , Humanos
12.
JCI Insight ; 9(7)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587077

RESUMEN

To unravel the heterogeneity and molecular signature of effector memory Th2 cells (Tem2), we analyzed 23 individuals' PBMCs of filaria-infected (Filaria+) and 24 healthy volunteers (Filaria-), with or without coincident house dust mite (HDM) allergic sensitization. Flow cytometry revealed 3 CD4+ Tem subsets - CCR4+CCR6+CRTH2- Tem17, CCR4+CCR6-CRTH2+ Tem2, and CCR6+CCR4+CRTH2+ Tem17.2 - markedly enriched in Filaria+ individuals. These subsets were sorted and analyzed by multiomic single-cell RNA immunoprofiling. SingleR-annotated Th2 cells from Tem2 and Tem17.2 cell subsets had features of pathogenic Th2 effector cells based on their transcriptional signatures, with downregulated CD27 and elevated expression levels of ITGA4, IL17RB, HPGDS, KLRB1, PTGDR2, IL9R, IL4, IL5, and IL13 genes. When the Filaria+ individuals were subdivided based on their allergic status, Tem2 cells in HDM+Filaria+ individuals showed an overall reduction in TCR diversity, suggesting the occurrence of antigen-driven clonal expansion. Moreover, HDM+Filaria+ individuals showed not only an expansion in the frequency of both Tem2 and Tem17.2 cell subsets, but also a change in their molecular program by overexpressing GATA3, IL17RB, CLRF2, and KLRB1, as well as increased antigen-induced IL-4, IL-5, and IL-13 production, suggesting that aeroallergens reshape the transcriptional and functional programming of Th2 cell subsets in human filarial infection toward a pathogenic immunophenotype.


Asunto(s)
Hipersensibilidad , Subgrupos de Linfocitos T , Animales , Humanos , Células Th2 , Alérgenos , Pyroglyphidae
13.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38903060

RESUMEN

Diarrheal diseases are the second leading cause of death in children worldwide. Epidemiological studies show that co-infection with Giardia intestinalis decreases the severity of diarrhea. Here, we show that Giardia is highly prevalent in the stools of asymptomatic school-aged children. It orchestrates a Th2 mucosal immune response, characterized by increased antigen-specific Th2 cells, IL-25, Type 2-associated cytokines, and goblet cell hyperplasia. Giardia infection expanded IL-10-producing Th2 and GATA3+ Treg cells that promoted chronic carriage, parasite transmission, and conferred protection against Toxoplasma gondii-induced lethal ileitis and DSS-driven colitis by downregulating proinflammatory cytokines, decreasing Th1/Th17 cell frequency, and preventing collateral tissue damage. Protection was dependent on STAT6 signaling, as Giardia-infected STAT6-/- mice no longer regulated intestinal bystander inflammation. Our findings demonstrate that Giardia infection reshapes mucosal immunity toward a Type 2 response, which confers a mutualistic protection against inflammatory disease processes and identifies a critical role for protists in regulating mucosal defenses.

14.
Nat Microbiol ; 9(1): 120-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38066332

RESUMEN

Oxidative stress triggers ferroptosis, a form of cellular necrosis characterized by iron-dependent lipid peroxidation, and has been implicated in Mycobacterium tuberculosis (Mtb) pathogenesis. We investigated whether Bach1, a transcription factor that represses multiple antioxidant genes, regulates host resistance to Mtb. We found that BACH1 expression is associated clinically with active pulmonary tuberculosis. Bach1 deletion in Mtb-infected mice increased glutathione levels and Gpx4 expression that inhibit lipid peroxidation. Bach1-/- macrophages exhibited increased resistance to Mtb-induced cell death, while Mtb-infected Bach1-deficient mice displayed reduced bacterial loads, pulmonary necrosis and lipid peroxidation concurrent with increased survival. Single-cell RNA-seq analysis of lungs from Mtb-infected Bach1-/- mice revealed an enrichment of genes associated with ferroptosis suppression. Bach1 depletion in Mtb-infected B6.Sst1S mice that display human-like necrotic lung pathology also markedly reduced necrosis and increased host resistance. These findings identify Bach1 as a key regulator of cellular and tissue necrosis and host resistance in Mtb infection.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Tuberculosis , Animales , Ratones , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Macrófagos/microbiología , Mycobacterium tuberculosis/genética , Necrosis , Tuberculosis/microbiología , Tuberculosis Pulmonar/genética
15.
Exp Parasitol ; 133(1): 80-8, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23142084

RESUMEN

Corticosteroids and cyclosporine A (CsA) are important clinical immunosuppressive drugs used in the maintenance of organ transplants and in suppressing undesired autoimmune or allergic immune responses. To study the effect of CsA and prednisolone on the course of an Ancylostoma ceylanicum infection, hamsters were treated with commercially available prednisolone or CsA. For both drugs, half the recommended dose was sufficient to inhibit the proliferation of more than 70% of hamster lymph node cells. There was no difference in the recovery of adult worms; however, animals treated with prednisolone presented with low egg counts in the feces. Infection with A. ceylanicum resulted in an increase in specific antibodies against adult worm antigens, but hamsters treated with either drug presented with lower IgG titers. We observed that A. ceylanicum infection caused peripheral cellular immune suppression, which is characterized by a reduction in the total white cell count, neutropenia and lymphopenia. We also observed a lymphoplasmacytic pattern and few eosinophils in the mucosal inflammatory infiltrate for all the animals. The animals treated with prednisolone showed changes in the architecture of the intestine, including the loss of the mucosa, intense congestion and inflammation. In spleen, we observed hyperplasia of white pulp in all infected animals; in addition, there was a loss of tissue architecture in the animals treated with prednisolone. In conclusion, this work shows that an A. ceylanicum infection leads to acute peripheral cellular immune suppression in hamsters but not humoral immune suppression and that CsA treatment does not interfere with the process of infection. However, prednisolone treatment causes intestinal injury, what could hamper the parasite attachment to the intestinal wall, and as a result affects copulation and, consequently, decreases the number of eggs eliminated in the feces. Moreover, the possibility that the drug can also be exerting an effect on female fertility should be considered.


Asunto(s)
Anquilostomiasis/tratamiento farmacológico , Ciclosporina/uso terapéutico , Glucocorticoides/uso terapéutico , Inmunosupresores/uso terapéutico , Prednisolona/uso terapéutico , Anquilostomiasis/inmunología , Animales , Proliferación Celular/efectos de los fármacos , Cricetinae , Ciclosporina/farmacología , Modelos Animales de Enfermedad , Heces/parasitología , Femenino , Glucocorticoides/farmacología , Inmunoglobulina G/sangre , Inmunosupresores/farmacología , Intestino Delgado/parasitología , Intestino Delgado/patología , Ganglios Linfáticos/citología , Ganglios Linfáticos/efectos de los fármacos , Ganglios Linfáticos/inmunología , Mesenterio , Mesocricetus , Recuento de Huevos de Parásitos , Prednisolona/farmacología , Bazo/patología
16.
J Allergy Clin Immunol Glob ; 2(4): 100131, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37781651

RESUMEN

Background: The immunologic mechanisms underlying pulmonary type 2 inflammation, including the dynamics of eosinophil recruitment to the lungs, still need to be elucidated. Objective: We sought to investigate how IL-13-producing TH2 effector cells trigger eosinophil migration in house dust mite (HDM)-driven allergic pulmonary inflammation. Methods: Multiparameter and molecular profiling of murine lungs with HDM-induced allergy was investigated in the absence of IL-13 signaling by using IL-13Rα1-deficient mice and separately through adoptive transfer of CD4+ T cells from IL-5-deficient mice into TCRα-/- mice before allergic inflammation. Results: We demonstrated through single-cell techniques that HDM-driven pulmonary inflammation displays a profile characterized by TH2 effector cell-induced IL-13-dominated eosinophilic inflammation. Using HDM-sensitized IL-13Rα1-/- mice, we found a marked reduction in the influx of eosinophils into the lungs along with a significant downregulation of both CCL-11 and CCL-24. We further found that eosinophil trafficking to the lung relies on production of IL-13-driven CCL-11 and CCL-24 by fibroblasts and Ly6C+ (so-called classical) monocytes. Moreover, this IL-13-mediated eotaxin-dependent eosinophil influx to the lung tissue required IL-5-induced eosinophilia. Finally, we demonstrated that this IL-13-driven eosinophil-dominated pulmonary inflammation was critical for limiting bystander lung transiting Ascaris parasites in a model of allergy and helminth interaction. Conclusion: Our data suggest that IL-5-dependent allergen-specific TH2 effector cell response and subsequent signaling through the IL-13/IL-13Rα1 axis in fibroblasts and myeloid cells regulate the eotaxin-dependent recruitment of eosinophils to the lungs, with multiple downstream consequences, including bystander control of lung transiting parasitic helminths.

17.
Exp Parasitol ; 132(4): 450-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23000485

RESUMEN

The efficacy of three amino-terpenyl naphthoquinones and the alkaloid liriodenine were examined against tachyzoites and tissues cysts of the RH and EGS strains, respectively. Monolayers of 2C4 fibroblasts infected with tachyzoites of the RH strain were incubated with different concentrations of the compounds for 48 h. Specifically, 7-(4-methyl-3-pentenyl)-2-pyrrolidine-[1,4]-naphthoquinone (QUI-5), 6-(4-methyl-3-pentenyl)-2-pyrrolidine-[1,4]-naphthoquinone (QUI-6), 6-(4-methylpentyl)-2-pyrrolidine-[1,4]-naphthoquinone (QUI-11), and 8 h-benzo[g]-1,3-benzodioxolo[6,5,4-de]quinolin-8-one,9Cl-1,2-methylene dioxiaporfina (liriodenine) inhibited intracellular replication of T. gondii. The IC(50) values obtained for compounds QUI-5 and QUI-6 were 69.35 and 172.81 µM (i.e., 21.4 and 53.4 µg/mL), respectively. The naphthoquinone QUI-11 and liriodenine significantly inhibited intracellular replication of T. gondii. The IC(50) values obtained with these experiments were 0.32 and 0.07 µM (i.e., 0.1 and 0.02 µg/mL), respectively. Compounds QUI-5, QUI-6, QUI-11 and liriodenine demonstrated lower toxicity for 2C4 fibroblasts compared to atovaquone. In addition, cysts isolated from the brains of mice chronically infected with the EGS strain were exposed to the compounds. Infectivity of the cysts after incubation with the compounds was assessed by infection of mice. The data obtained showed that in vitro incubation with QUI-6, QUI-11 and liriodenine inhibited the infectivity of the bradyzoites. This activity was time- and concentration-dependent.


Asunto(s)
Aporfinas/farmacología , Coccidiostáticos/farmacología , Fibroblastos/parasitología , Naftoquinonas/farmacología , Toxoplasma/efectos de los fármacos , Animales , Antimaláricos/química , Antimaláricos/farmacología , Aporfinas/química , Atovacuona/química , Atovacuona/farmacología , Células Cultivadas , Coccidiostáticos/química , Femenino , Fibroblastos/efectos de los fármacos , Prepucio/citología , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Naftoquinonas/química , Relación Estructura-Actividad , Sulfadiazina/química , Sulfadiazina/farmacología , Toxoplasma/patogenicidad , Toxoplasmosis Animal/tratamiento farmacológico , Toxoplasmosis Animal/parasitología
18.
Front Immunol ; 13: 883159, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35844575

RESUMEN

We generated CD4+ T cell lines (TCLs) reactive to either SARS-CoV-2 spike (S) or membrane (M) proteins from unexposed naïve T cells from six healthy donor volunteers to understand in fine detail whether the S and M structural proteins have intrinsic differences in driving antigen-specific CD4+ T cell responses. Having shown that each of the TCLs were antigen-specific and antigen-reactive, single cell mRNA analyses demonstrated that SARS-CoV-2 S and M proteins drive strikingly distinct molecular signatures. Whereas the S-specific CD4+ T cell transcriptional signature showed a marked upregulation of CCL1, CD44, IL17RB, TNFRSF18 (GITR) and IGLC3 genes, in general their overall transcriptome signature was more similar to CD4+ T cell responses induced by other viral antigens (e.g. CMV). However, the M protein-specific CD4+ TCLs have a transcriptomic signature that indicate a marked suppression of interferon signaling, characterized by a downregulation of the genes encoding ISG15, IFITM1, IFI6, MX1, STAT1, OAS1, IFI35, IFIT3 and IRF7 (a molecular signature which is not dissimilar to that found in severe COVID-19). Our study suggests a potential link between the antigen specificity of the SARS-CoV-2-reactive CD4+ T cells and the development of specific sets of adaptive immune responses. Moreover, the balance between T cells of significantly different specificities may be the key to understand how CD4+ T cell dysregulation can determine the clinical outcomes of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Linfocitos T CD4-Positivos , COVID-19/genética , Línea Celular , Epítopos de Linfocito T , Humanos , Interferones , Glicoproteína de la Espiga del Coronavirus
19.
Insect Biochem Mol Biol ; 143: 103739, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149206

RESUMEN

Triatoma infestans is one of the most important vectors of Trypanosoma cruzi in the Americas. While feeding, they release large amounts of saliva that will counteract the host's responses triggered at the bite site. Despite the various activities described on T. infestans saliva, little is known about its effect on the modulation of the host's immune system. This work aimed to describe the effects of T. infestans saliva on cells of the mouse immune system and access the role in hematophagy. The effect of saliva or salivary gland extract (SGE) was evaluated in vivo and in vitro by direct T. infestans feeding on mice or using different biological assays. Mice that were submitted to four bites by three specimens of T. infestans had their anti-saliva IgG serum levels approximately 2.4 times higher than controls, but no change in serum IL-2, IL-4, IL-6, IL-10, IL-17A, IFN-γ, and TNF-α levels was observed. No macroscopic alterations were seen at the bite site, but an accumulation of mononuclear and polymorphonuclear cells shortly after the bite and 24 h later were observed in histological cuts. At low concentrations (up to ∼5 µg/well), SGE induced TNF-α production by macrophages and spleen cells, IFN-γ and IL-10 by spleen cells and NO by macrophages. However, at higher concentrations (10 and 20 µg/well), viability of macrophages and spleen cells was reduced by SGE, reducing the production of NO and cytokines (except TNF-α). The salivary trialysin was the main inducer of cell death as macrophage viability and NO production was restored in assays carried out with SGE from trialysin knockdown insects. The reduction of the salivary trialysin by RNAi affected the total ingestion rate, the weight gain, and retarded the molt from second to the fifth instar of T. infestans nymphs fed on mice. The results show that T. infestans saliva modulates the activity of cells of the host immune system and trialysin is an important salivary molecule that reduces host cells viability and impacts the feeding performance of T. infestans feeding on live hosts.


Asunto(s)
Triatoma , Trypanosoma cruzi , Animales , Sistema Inmunológico , Ratones , Saliva , Proteínas y Péptidos Salivales/farmacología
20.
mBio ; 12(6): e0289021, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933444

RESUMEN

High-throughput 16S rRNA sequencing has allowed the characterization of helminth-uninfected (HU) and helminth-infected (HI) gut microbiomes, revealing distinct profiles. However, there have been no qualitative or quantitative syntheses of these studies, which show marked variation in participant age, diet, pathogen of interest, and study location. A predefined minimally biased search strategy identified 23 studies in humans. For each of these studies, we qualitatively addressed the effects of helminth infection on within-individual (alpha) and between-individual (beta) fecal microbiome diversity, infection-associated microbial taxa, the effect of helminth clearance on microbiome composition, microbiome composition as a predictor of infection status or treatment outcome, and treatment-specific effects on the fecal microbiome. Concomitantly, we performed a meta-analysis on a subset of 7 of these studies containing raw, paired-end 16S reads and individual-level metadata, comprising 424 pretreatment or untreated HI individuals and 497 HU controls. After reducing the batch effect and adjusting for age, our data demonstrated that intestinal helminth parasites can alter the host gut microbiome by increasing alpha diversity and promoting taxonomic reassortment and gradient collapse. Most strongly influencing the microbiome composition were the helminths found in the large intestine, Enterobius vermicularis and Trichuris trichiura, suggesting that this influence appears to be specific to soil-transmitted helminths (STH) species and host anatomical niche. In summary, using a large and diverse sample set captured in the meta-analysis, we were able to evaluate the influence of individual helminth species as well as species-species interactions, each of which explained a significant portion of the variation in the microbiome. IMPORTANCE The gut microbiome has established importance in regulating many aspects of human health, including nutrition and immunity. While many internal and environmental factors are known to influence the microbiome, less is known about the effects of intestinal helminth parasites (worms), which together affect one-sixth of the world's population. Through a comprehensive qualitative systematic review and quantitative meta-analysis of existing literature, we provide strong evidence that helminth infection dynamically shifts the intestinal microbiome structure. Moreover, we demonstrated that such influence seems to be specific to helminth species and host anatomical niche. Our findings suggest that the gut microbiome may underlie some of the pathology associated with intestinal worm infection and support future work to understand the precise nature of the helminth-microbiome relationship.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Disbiosis/microbiología , Microbioma Gastrointestinal , Helmintiasis/microbiología , Helmintos/fisiología , Adolescente , Adulto , Anciano , Animales , Bacterias/genética , Niño , Preescolar , Disbiosis/parasitología , Heces/parasitología , Femenino , Helmintiasis/parasitología , Helmintos/clasificación , Helmintos/genética , Humanos , Lactante , Masculino , Persona de Mediana Edad , Filogenia , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda