Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Res ; 254: 119164, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38762005

RESUMEN

The necessity for global engineering and technological solutions to address rural environmental challenges is paramount, particularly in improving rural waste treatment and infrastructure. This study presents a comprehensive quantitative analysis of 3901 SCI/SSCI and 3818 Chinese CSCD papers, spanning from 1989 to 2021, using tools like Derwent Data Analyzer and VOSviewer. Our key findings reveal a significant evolution in research focus, including a 716.67% increase in global publications from 1995 to 2008 and a 154.76% surge from 2015 to 2021, highlighting a growing research interest with technological hotspots in rural revitalization engineering and agricultural waste recycling. China and the USA are pivotal, contributing 784 and 714 publications respectively. Prominent institutions such as the Chinese Academy of Sciences play a crucial role, particularly in fecal waste treatment technology. These insights advocate for enhanced policy development and practical implementations to foster inclusive and sustainable rural environments globally.


Asunto(s)
Población Rural , Ingeniería , Reciclaje , China , Administración de Residuos/métodos , Tecnología , Agricultura/métodos
2.
J Environ Manage ; 356: 120614, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513588

RESUMEN

Excessive use of tetracycline antibiotics in poultry farming results in significant concentrations of these drugs and tetracycline resistance genes (TRGs) in chicken manure, impacting both environmental and human health. Our research represents the first investigation into the removal dynamics of chlortetracycline (CTC) and TRGs in different layers of an ex situ fermentation system (EFS) for chicken waste treatment. By pinpointing and analyzing dominant TRGs-harboring bacteria and their interactions with environmental variables, we've closed an existing knowledge gap. Findings revealed that CTC's degradation half-lives spanned 3.3-5.8 days across different EFS layers, and TRG removal efficiency ranged between 86.82% and 99.52%. Network analysis highlighted Proteobacteria and Actinobacteria's essential roles in TRGs elimination, whereas Chloroflexi broadened the potential TRG hosts in the lower layer. Physical and chemical conditions within the EFS influenced microbial community diversity, subsequently impacting TRGs and integrons. Importantly, our study reports that the middle EFS layer exhibited superior performance in eliminating CTC and key TRGs (tetW, tetG, and tetX) as well as intI2. Our work transcends immediate health and environmental remediation by offering insights that encourage sustainable agriculture practices.


Asunto(s)
Clortetraciclina , Estiércol , Animales , Humanos , Estiércol/análisis , Pollos , Fermentación , Antibacterianos/farmacología , Antibacterianos/análisis , Tetraciclina , Genes Bacterianos
3.
Int Wound J ; 21(3): e14690, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453139

RESUMEN

The study explores the impact of predictive nursing interventions on pressure ulcers (PUs) in elderly bedridden patients. A total of 120 elderly bedridden patients from the Central Hospital of Enshi Tujia and Miao Autonomous Prefecture between August 2019 and August 2023 were selected as the subjects of the study and were randomly divided into an observation group and a control group using a random number table method. The control group received conventional nursing care, while the observation group received predictive nursing interventions. The study compared the incidence of PUs, Braden scale scores, the onset time of PUs, self-rating anxiety scale (SAS) scores, self-rating depression scale (SDS) scores, and nursing satisfaction between the two groups. In elderly bedridden patients, the application of predictive nursing interventions significantly reduced the incidence of PUs (p < 0.001), significantly lowered the SAS and SDS scores (p < 0.001), and also significantly increased Braden scale scores (p < 0.001) and delayed the onset time of PUs (p < 0.001). Additionally, it improved patients' nursing satisfaction (p = 0.008). Predictive nursing interventions in elderly bedridden patients have good application effects, reducing the occurrence of PUs, delaying the time of onset in patients, improving patients' negative emotions and enhancing nursing satisfaction rates. It is worthy of widespread use.


Asunto(s)
Úlcera por Presión , Humanos , Anciano , Úlcera por Presión/etiología , Personas Encamadas , Pacientes , Incidencia , Supuración/complicaciones
4.
J Environ Manage ; 321: 115964, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007385

RESUMEN

The ongoing "toilet revolution" in China provides new opportunities to improve the rural living environment and sanitation, and the introduction of new sanitation facilities such as urine diverting composting toilets (UDCTs) is conducive to the effective treatment and resource utilization of feces. This study revealed the degradation performance and microbial community dynamics of UDCTs and clarified the influence mechanism of fecal volume in aerobic composting treatment. The results showed that UDCTs could effectively decompose human feces, with an organic matter degradation rate of 25%⁓30%. The temperature, water content, NH4+-N and nutrient accumulation were higher in the high fecal volume treatment than in the low fecal volume treatment. Bacterial community composition and structure in UDCTs varied with composting stage and fecal volume. The diversity and richness of bacterial community in compost were changed with different fecal volumes, but the dominant groups were similar. Redundancy analysis (RDA) showed that nitrogen and organic carbon were the main drivers of bacterial community changes during composting. Highly nutritious and non-phytotoxic compost products were suitable for agronomic uses. Based on these results, UDCTs can be an effective way to solve the problem of fecal pollution in rural areas, and fecal dosage is a potential influencing factor in the operation and maintenance of composting systems.


Asunto(s)
Aparatos Sanitarios , Compostaje , Bacterias , Humanos , Nitrógeno , Saneamiento , Suelo/química
5.
Sensors (Basel) ; 21(2)2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33430163

RESUMEN

Airborne eddy covariance (EC) measurement is one of the most effective methods to directly measure the surface mass and energy fluxes at the regional scale. It offers the possibility to bridge the scale gap between local- and global-scale measurements by ground-based sites and remote-sensing instrumentations, and to validate the surface fluxes estimated by satellite products or process-based models. In this study, we developed an unmanned aerial vehicle (UAV)-based EC system that can be operated to measure the turbulent fluxes in carbon dioxides, momentum, latent and sensible heat, as well as net radiation and photosynthetically active radiation. Flight tests of the developed UAV-based EC system over land were conducted in October 2020 in Inner Mongolia, China. The in-flight calibration was firstly conducted to correct the mounting error. Then, three flight comparison tests were performed, and we compared the measurement with those from a ground tower. The results, along with power spectral comparison and consideration of the differing measurement strategies indicate that the system can resolve the turbulent fluxes in the encountered measurement condition. Lastly, the challenges of the UAV-based EC method were discussed, and potential improvements with further development were explored. The results of this paper reveal the considerable potential of the UAV-based EC method for land surface process studies.

6.
Acta Pharmacol Sin ; 41(11): 1427-1432, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32555510

RESUMEN

Induced pluripotent stem cells (iPSCs) have become an essential research platform to study different human diseases once being discovered by Dr. Shinya Yamanaka in 2006. Another breakthrough in biomedical research is the application of CRISPR/Cas9 system for genome editing in mammalian cells. Although numerous studies have been done to develop methods for gene editing in iPSCs, the current approaches suffer from several limitations, including time and labor consuming, low editing efficiency, and potential off-target effects. In the current study, we report an electroporation-mediated plasmid CRISPR/Cas9 delivery approach for genome editing in iPSCs. With this approach, an edited iPSC cell line could be obtained within 2 weeks. In addition, the transit introducing of CRISPR/Cas9 machinery could minimize genomic integration of Cas9 gene, which avoided potential long-term side effects of Cas9 enzyme. We showed that CRISPR/Cas9-mediated genomic editing did not affect pluripotency and differentiation ability of iPSCs. With the quickly evolving of both iPSC and CRISPR/Cas9-mediated genome editing research fields, we believe that our method can significantly facilitate the application of genome editing in iPSCs research.


Asunto(s)
Proteína 9 Asociada a CRISPR/genética , Sistemas CRISPR-Cas , Edición Génica/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Secuencia de Bases , Diferenciación Celular/genética , Técnicas de Inactivación de Genes/métodos , Humanos , Plásmidos , Ubiquitina Tiolesterasa/genética
7.
Acta Pharmacol Sin ; 40(9): 1205-1211, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30867543

RESUMEN

Corneal wounds usually heal quickly; but diabetic patients have more fragile corneas and experience delayed and painful healing. In the present study, we compared the healing capacity of corneal epithelial cells (CECs) between normal and diabetic conditions and the potential mechanisms. Primary murine CEC derived from wild-type and diabetic (db/db) mice, as well as primary human CEC were prepared. Human CEC were exposed to high glucose (30 mM) to mimic diabetic conditions. Cell migration and proliferation were assessed using Scratch test and MTT assays, respectively. Reactive oxygen species (ROS) production in the cells was measured using dichlorofluorescein reagent. Western blot was used to evaluate the expression levels of Akt. Transepithelial electrical resistance (TEER) and zonula occludens-1 (ZO-1) expression were used to determine tight junction integrity. We found that the diabetic CEC displayed significantly slower cell proliferation and migration compared with the normal CEC from both mice and humans. Furthermore, ROS production was markedly increased in CEC grown under diabetic conditions. Treatment with an antioxidant N-acetyl cysteine (NAC, 100 µM) significantly decreased ROS production and increased wound healing in diabetic CEC. Barrier function was significantly reduced in both diabetic mouse and human CEC, while NAC treatment mitigated these effects. We further showed that Akt signaling was impaired in diabetic CEC, which was partially improved by NAC treatment. These results show that diabetic conditions lead to delayed wound-healing capacity of CEC and impaired tight junction formation in both mice and human. Increased ROS production and inhibited Akt signaling may contribute to this outcome, implicating these as potential targets for treating corneal wounds in diabetic patients.


Asunto(s)
Movimiento Celular/fisiología , Diabetes Mellitus Experimental/fisiopatología , Células Epiteliales/metabolismo , Transducción de Señal/fisiología , Uniones Estrechas/metabolismo , Cicatrización de Heridas/fisiología , Animales , Proliferación Celular/fisiología , Células Cultivadas , Córnea/citología , Humanos , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Chemistry ; 24(45): 11619-11626, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30003616

RESUMEN

Preparation of stable water-in-oil (W/O) high internal phase emulsion (HIPE) containing methyl methacrylate (MMA) monomer as oil phase is a difficult task due to the significant solubility of MMA in water. Here, for the first time a fluorinated di-block copolymer (FDBC) poly (2-dimethylamino)ethylmethacrylate-b-poly (trifluoroethyl methacrylate) (PDMAEMA-b-PTFEMA) is proposed to stabilize HIPEs of MMA without the use of any co-stabilizer or thickening agent. Fluorinated segments in FDBC anchored well at oil/water interface of HIPE, offering high hydrophobicity to the partially hydrophilic MMA monomer and in turn stabilization to MMA-HIPE. By using fluorinated di-block copolymer as stabilizer, highly stable HIPEs can be obtained. In addition, highly interconnected porous monoliths were obtained after free radical polymerization, which are highly desirable materials in various practical applications including tissue engineering scaffolds, separation science, bio-engineering and so on. The as-prepared MMA-HIPEs possess high thermal stability without phase separation. The textural characteristics of as-prepared composites, such as pore size and distribution, can be easily controlled by simply varying the amount of FDBC and/or dispersed phase fraction. Moreover, the influence of di-block concentration on water uptake (WU) capability of the prepared porous monoliths is explored.

9.
Ecotoxicol Environ Saf ; 147: 144-150, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28841530

RESUMEN

A previously undescribed atrazine-degrading bacterial strain TT3 capable of growing with atrazine as its sole nitrogen source was isolated from soil at the wastewater outfall of a pesticide factory in China. Phenotypic characterization and 16S rRNA gene sequencing indicated that the isolate belonged to the genus Citricoccus. Polymerase chain reaction (PCR) analysis revealed that TT3 contained the atrazine-degrading genes trzN, atzB, and atzC. The range for growth and atrazine degradation of TT3 was found to be pH 6.0-11.0, with a preference for alkaline conditions. At 30°C and pH 7.0, the strain removed 50mg/L atrazine in 66h with 1% inoculum. These results demonstrate that Citricoccus sp. TT3 has great potential for bioremediation of atrazine-contaminated sites, particularly in alkaline environments. To the best of our knowledge, there are no previous reports of Citricoccus strains that degrade atrazine, and therefore this work provides a novel candidate for atrazine bioremediation.


Asunto(s)
Atrazina/análisis , Herbicidas/análisis , Micrococcaceae/crecimiento & desarrollo , Microbiología del Suelo , Contaminantes del Suelo/análisis , Atrazina/metabolismo , Biodegradación Ambiental , China , Herbicidas/metabolismo , Micrococcaceae/aislamiento & purificación , ARN Ribosómico 16S/genética , Suelo/química , Contaminantes del Suelo/metabolismo , Eliminación de Residuos Líquidos , Aguas Residuales/microbiología
10.
Molecules ; 22(2)2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28124975

RESUMEN

In this work, a thermo-responsive and cross-linked fluoropolymer poly(2,2,2-Trifluoroethyl) methacrylate (PTFEMA) was successfully prepared by reversible addition-fragmentation chain transfer (RAFT) mediated aqueous polymerization with a thermo-responsive diblock poly(dimethylacrylamide-b-N-isopropylacrylamide) (PDMA-b-PNIPAM) that performed a dual function as both a nanoreactor and macro-RAFT agent. The cross-linked polymer particles proved to be in a spherical-like structure of about 50 nm in diameter and with a relatively narrow particle size distribution. ¹H-NMR and 19F-NMR spectra showed that thermo-responsive diblock P(DMA-b-NIPAM) and cross-linked PTFEMA particles were successfully synthesized. Influence of the amount of ammonium persulfate (APS), the molar ratio of monomers to RAFT agent, influence of the amount of cross-linker on aqueous polymerization and thermo-responsive characterization of the particles are investigated. Monomer conversion increased from 44% to 94% with increasing the molar ratio of APS and P(DMA-b-NIPAM) from 1:9 to1:3. As the reaction proceeded, the particle size increased from 29 to 49 nm due to the consumption of TFEMA monomer. The size of cross-linked nanoparticles sharply decreased from 50.3 to 40.5 nm over the temperature range 14-44 °C, suggesting good temperature sensitivity for these nanoparticles.


Asunto(s)
Halogenación , Nanopartículas/química , Polímeros/química , Temperatura , Espectroscopía de Resonancia Magnética , Metacrilatos/química , Nanopartículas/ultraestructura , Polimerizacion , Polímeros/síntesis química , Espectroscopía de Protones por Resonancia Magnética
11.
Inorg Chem ; 55(5): 2037-47, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26894272

RESUMEN

Novel high-nuclearity lanthanide clusters (Ln17) are generated in situ in the coordination-driven self-assembly. A metal-cluster-directed symmetry strategy for building metal coordination cages is successfully applied to a lanthanide system for the first time. A new family of octagonal-prismatic lanthanide coordination cages UJN-Ln, formulated as [Ln(µ3-OH)8][Ln16(µ4-O)(µ4-OH)(µ3-OH)8(H2O)8(µ4-dcd)8][(µ3-dcd)8]·22H2O (Ln = Gd, Tb, Dy, Ho, and Er; dcd = 3,3-dimethylcyclopropane-1,2-dicarboxylate dianion), have been assembled from the unique Ln17 clusters and simple cliplike ligand H2dcd. Apart from featuring aesthetically charming structures, all of the compounds present predominantly antiferromagnetic coupling between the corresponding lanthanide ions. Additionally, the intense-green photoluminescence for UJN-Tb and magnetic relaxation behavior for UJN-Dy have been observed. Remarkably, UJN-Gd shows a large magnetocaloric effect (MCE) with an impressive entropy change value of 42.3 J kg(-1) K(-1) for ΔH = 7.0 T at 2.0 K due to the high-nuclearity cluster and the lightweight ligand. The studies highlight the structural diversity of multigonal-prismatic metal coordination cages and provide a new direction in the design of cagelike multifunctional materials by the introduction of lanthanide clusters and other suitable cliplike ligands.

12.
Water Sci Technol ; 74(2): 393-401, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27438244

RESUMEN

An Fe-Cu binary oxide was fabricated through a simple co-precipitation process, and was used to remove Sb(III) from aqueous solution. X-ray diffraction, scanning electron microscopy, energy dispersive X-ray and N2 adsorption-desorption measurements demonstrated that the Fe-Cu binary oxide consisted of poorly ordered ferrihydrite and CuO, and its specific surface area was higher than both iron oxide and copper oxide. A comparative test indicated that Fe/Cu molar ratio of prepared binary oxide greatly influenced Sb(III) removal and the optimum Fe/Cu molar ratio was about 3/1. Moreover, a maximum adsorption capacity of 209.23 mg Sb(III)/g Fe-Cu binary oxide at pH 5.0 was obtained. The removal of Sb(III) by Fe-Cu binary oxide followed the Freundlich adsorption isotherm and the pseudo-second-order kinetics in the batch study. The removal of Sb(III) was not sensitive to solution pH. In addition, the release of Fe and Cu ions to water was very low when the pH was greater than 6.0. X-ray photoelectron spectroscopy analysis confirmed that the Sb(III) adsorbed on the surface was not oxidized to Sb(V).


Asunto(s)
Antimonio/química , Cobre/química , Compuestos Férricos/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/química , Adsorción , Cinética , Oxidación-Reducción
13.
Anim Biosci ; 37(6): 1065-1076, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419533

RESUMEN

OBJECTIVE: This study aimed to assess the effects of dietary mulberry leaves on the growth, production performance, gut microbiota, and immunological parameters of poultry and livestock. METHODS: The PubMed, Embase, and Scopus databases were systematically analyzed to identify pertinent studies up to December 2022. The effects of mulberry leaf diet was assessed using the weighted mean difference, and the 95% confidence interval was calculated using a random-effects model. RESULTS: In total, 18 studies that sampled 2,335 poultry and livestock were selected for analysis. Mulberry leaves improved the average daily gain and reduced the feed/meat ratio in finishing pigs, and the average daily gain and average daily feed intake in chicken. In production performance, mulberry leaves lowered the half carcass weight, slaughter rate, and loin eye area in pigs, and the slaughter rate in chickens. Regarding meat quality in pigs, mulberry leaves reduced the cooked meat percentage, shear force, crude protein, and crude ash, and increased the 24 h pH and water content. In chickens, it increased the drip loss, shear force, 45 min and 24 h pH, crude protein, and crude ash. Mulberry leaves also affect the abundances of gut microbiota, including Bacteroides, Prevotella, Megamonas, Escherichia-Shigella, Butyricicoccus, unclassified Ruminococcaceae, Bifidobacterium, Lactobacillus, and Escherichia coli in poultry and livestock. Mulberry leaves at different doses were associated with changes in antioxidant capacity in chickens, and immune organ indexes in pigs. With respect to egg quality, mulberry leaves at different doses improved the shell strength, yolk color, eggshell thickness, and eggshell weight. However, moderate doses diminished the egg yolk ratio and the egg yolk moisture content. CONCLUSION: In general, dietary mulberry leaves improved the growth, production performance, and immunological parameters in poultry and livestock, although the effects varied at different doses.

14.
Plants (Basel) ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38337927

RESUMEN

This investigation focused on the suppressive impact of varying NaHCO3 concentrations on cucumber seed germination and the ameliorative effects of 2,4-Epibrassinolide (EBR). The findings revealed a negative correlation between NaHCO3 concentration and cucumber seed germination, with increased NaHCO3 concentrations leading to a notable decline in germination. Crucially, the application of exogenous EBR significantly counteracted this inhibition, effectively enhancing germination rates and seed vigor. Exogenous EBR was observed to substantially elevate the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), thereby mitigating oxidative damage triggered under NaHCO3 stress conditions. Additionally, EBR improved enzyme activity under alkaline stress conditions and reduced starch content in the seeds. Pertinently, EBR upregulated genes that were associated with gibberellin (GA) synthesis (GA20ox and GA3ox), and downregulated genes that were linked to abscisic acid (ABA) synthesis (NCED1 and NCED2). This led to an elevation in GA3 concentration and a reduction in ABA concentration within the cucumber seeds. Therefore, this study elucidates that alleviating oxidative stress, promoting starch catabolism, and regulating the GA and ABA balance are key mechanisms through which exogenous EBR mitigates the suppression of cucumber seed germination resulting from alkaline stress.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 293: 122491, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36801739

RESUMEN

Copper (Cu) is an essential trace element for organisms, while excessive concentration of Cu is toxic. In order to assess the toxicity risk of copper in different valences, FTIR, fluorescence, and UV-vis absorption techniques were conducted to study the interactions between either Cu+ or Cu2+ and bovine serum albumin (BSA) under vitro simulated physiological condition. The spectroscopic analysis demonstrated that the intrinsic fluorescence emitted by BSA could be quenched by Cu+/Cu2+ via static quenching with binding sites 0.88 and 1.12 for Cu+ and Cu2+, respectively. On the other hand, the constants of Cu+ and Cu2+ are 1.14 × 103 L/mol and 2.08 × 104 L/mol respectively. ΔH is negative whereas ΔS is positive, showing that the interaction between BSA and Cu+/Cu2+ was mainly driven by electrostatic force. In accordance with Föster's energy transfer theory, the binding distance r showed that the transition of energy from BSA to Cu+/Cu2+ is highly likely to happen. BSA conformation analyses indicated that the interactions between Cu+/Cu2+ and BSA could alter the secondary structure of proteins. Current study provides more information of the interaction between Cu+/Cu2+ and BSA, and reveals the potential toxicological effect of different speciation of copper at molecular level.


Asunto(s)
Cobre , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Dicroismo Circular , Espectrometría de Fluorescencia , Cobre/química , Sitios de Unión , Espectrofotometría Ultravioleta , Unión Proteica , Termodinámica
16.
Sci Total Environ ; 871: 162055, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754328

RESUMEN

Capping and oxidation by lanthanum-modified bentonite (LMB) and calcium nitrate (CN) has a dual effect of deep phosphorus (P)/arsenic (As) clearance and surface P/As blockade. However, little information is available on the effect of LMB and CN on heavy metals. In this study, we hypothesize that LMB and CN exerted the same synergistic effect on heavy metals as P and As. We verified this through Rhizon samplers, diffusive gradients in thin films technology (DGT) and planar optode (PO) methods. The results showed that individual and combined LMB and CN treatments temporarily decreased but eventually increased the dissolved oxygen of the sediment-water interface (SWI). DGT-labile sulfide in the surface 110 mm sediment, soluble Fe(II) and DGT-labile Fe(II) in the surface 80 mm sediment were eliminated within 30 days by CN and LMB + CN treatments. A temporary sharp increase in soluble Fe, Mn, Co, and DGT-labile Mn, Co, Cu, and Ni was observed in CN and LMB + CN groups probably due to sulfide oxidation and carbonate dissolution. LMB + CN group showed a less-intense increase in DGT-labile metals and less metal release than the CN group (inferred from the total metal content). This indicates that LMB and CN had a synergistic effect on heavy metals. When using the LMB + CN treatment, LMB partly adsorbed and blocked metal release in sulfide and carbonate bound forms and finally transformed them into Fe and Mn oxides and residual forms. We suggest that CN should be combined with capping agents (at an appropriate pH) to compact sediments and block metal exchange at the SWI.

17.
Chemosphere ; 316: 137804, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36632956

RESUMEN

Due to high concentration of organic matter and the ease of disease transmission, blackwater pose a serious threat to both the environment and human health, especially in rural areas where wastewater treatment is dispersed. The reuse of biomass waste is also a difficult issue to be addressed urgently. In this study, an ectopic fermentation system (EFS) was used to treat toilet blackwater, and the effects of different biomass waste combinations on bacterial communities and functions during aerobic fermentation of blackwater were compared. The results showed that adding bran powder prolonged the high temperature period of 11 d, improved blackwater absorption capacity by 7.5% and was beneficial to microbial metabolic activities to enhance organic degradation. By contrast, the combination of corn straw and rice husk obtained abundant bacterial OTUs and diversity. Bacillus, Thermobifida and Thermopolyspora were the main microorganisms involved in the degradation of organic matter in EFS, and their abundance varied in different filler combinations. Bacterial communities were directly affected by environmental factors such as temperature, NH4+-N and organic carbon as well as biomass materials during fermentation. This study revealed the role of corn straw, rice husk and bran powder in EFSs, provided new technical support for blackwater treatment and a new direction for the resource utilization of agricultural biomass waste.


Asunto(s)
Fermentación , Aguas del Alcantarillado , Purificación del Agua , Humanos , Bacterias , Biomasa , Polvos , Purificación del Agua/métodos
18.
Sci Total Environ ; 880: 163297, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37028653

RESUMEN

Mixed chlorine/chloramines are common in drinking water distribution systems (DWDSs); however, their transformation and impact on chemical and microbial characteristics are not well understood. We systematically investigated water quality parameters associated with mixed chlorine/chloramine species conversion in 192 samples (including raw, finished, and tap water) collected throughout the year in a city in East China. Various chlorine/chloramine species (free chlorine, monochloramine [NH2Cl], dichloramine [NHCl2], and organic chloramines [OC]) were detected in both chlorinated and chloraminated DWDSs. NHCl2 + OC increased with transport distance along the pipeline network. The maximum proportion of NHCl2 + OC in over total chlorine in tap water reached 66 % and 38 % from chlorinated and chloraminated DWDSs, respectively. Both free chlorine and NH2Cl showed a rapid decay in the water pipe systems, but NHCl2 and OC were more persistent. Correlations between chlorine/chloramine species and physicochemical parameters were established. Models for predicting the sum of chloroform/TCM, bromodichloromethane/BDCM, chlorodibromomethane/CBDM, and bromoform/TBM (THM4) (R2 = 0.56) and haloacetic acids (HAAs) (R2 = 0.65) exhibited greater accuracy based on machine learning tuned with chlorine/chloramine species, particularly NHCl2 + OC. The predominant bacterial communities in mixed chlorine/chloramine systems were those resistant to chlorine or chloramine such as proteobacteria. NH2Cl was the most significant explanatory factor (28.1 %) for the variation in microbial community assemblage in chloraminated DWDSs. Although residual free chlorine and NHCl2 + OC, accounted for a smaller proportion of chlorine species in chloraminated DWDSs, they played an essential role (12.4 % and 9.1 %, respectively) in the microbial community structure.


Asunto(s)
Agua Potable , Purificación del Agua , Cloraminas , Cloro , Calidad del Agua , Desinfección
19.
Sci Rep ; 12(1): 2263, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35145109

RESUMEN

The discharge of aquaculture wastewater increased significantly in China. Especially, high content of nitrogen and phosphorus in wastewater could destroy the receiving water environment. To reduce the pollution of aquaculture wastewater, farmed triangle sail mussel (Hyriopsis cumingii) was proposed to be cultivated in the river. This was the first time that bacteria (Bacillus subtilis and Bacillus licheniformis) and microalgae (Chlorella vulgaris) were also used and complemented ecosystem functions. The pollutants in wastewater were assimilated by Chlorella vulgaris biomass, which was then removed through continuous filter-feeding of Hyriopsis cumingii. While, Bacillus subtilis and Bacillus licheniformis enhanced the digestive enzyme activities of mussel. It demonstrated that approximately 4 mussels/m3 was the optimal breeding density. Under such condition, orthogonal experiment indicated that the dose of Bacillus subtilis, Bacillus licheniformis, and Chlorella vulgaris should be 0.5, 1, and 2 mL respectively. Compared with mussel, mussel/microalgae, mussel/bacteria system, treatment ability of the mussel/microalgae/bacteria system in batch experiment was better, and 94.67% of NH3-N, 92.89% of TP and 77.78% of COD were reduced after reaction for 6 days. Finally, 90 thousand mussels per hectare of water were cultivated in Kulv river in China, and the field experiment showed that water quality was significantly improved. After about 35 days of operation, NH3-N, TN, TP and COD concentration were maintained around 0.3, 0.8, 0.3, and 30 mg/L respectively. Therefore, the mussel/microalgae /bacteria system in this study showed a sustainable and efficient characteristic of aquaculture wastewater bioremediation.


Asunto(s)
Acuicultura , Bacillus , Bivalvos/fisiología , Microalgas , Purificación del Agua/métodos , Animales , Ecosistema , Proyectos Piloto , Contaminantes Químicos del Agua/aislamiento & purificación , Calidad del Agua
20.
Chemosphere ; 287(Pt 2): 132198, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34517238

RESUMEN

97% of residential buildings are installed with secondary water supply system (SWSS) in China. In order to meet the water pressure demand, the SWSS has become a key solution to store and transport drinking water. The water age of the SWSS directly determines the quality of tap water, while total chlorine is a key indicator to evaluate the quality and safety of the water supply network. This study revealed the relationship between total chlorine and water age controlled by adjusting the liquid level of the secondary water supply tank. Models governing water age and the total chlorine concentration were developed based on the variation of the liquid level and the attenuation rate of the total chlorine in the SWSS. Furthermore, the validation was performed through case studies. The developed models can gain effective insights for determining the longest water age while guaranteeing the concentration of total chlorine meets the demand of the lower standard in SWSS. The secondary chlorine dosage would be quantified and added to the pipe network. The integration of the SWSS would be guided by water age in some old communities. The taste of tap water for direct drinking water could be improved by adjusting of water age using this model. The optimization method is easy to use for identifying efficient solutions for SWSS operation.


Asunto(s)
Agua Potable , Purificación del Agua , China , Cloro/análisis , Agua , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda