Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Nature ; 622(7983): 611-618, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37699522

RESUMEN

Clostridioides difficile infection (CDI) is a major cause of healthcare-associated gastrointestinal infections1,2. The exaggerated colonic inflammation caused by C. difficile toxins such as toxin B (TcdB) damages tissues and promotes C. difficile colonization3-6, but how TcdB causes inflammation is unclear. Here we report that TcdB induces neurogenic inflammation by targeting gut-innervating afferent neurons and pericytes through receptors, including the Frizzled receptors (FZD1, FZD2 and FZD7) in neurons and chondroitin sulfate proteoglycan 4 (CSPG4) in pericytes. TcdB stimulates the secretion of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) from neurons and pro-inflammatory cytokines from pericytes. Targeted delivery of the TcdB enzymatic domain, through fusion with a detoxified diphtheria toxin, into peptidergic sensory neurons that express exogeneous diphtheria toxin receptor (an approach we term toxogenetics) is sufficient to induce neurogenic inflammation and recapitulates major colonic histopathology associated with CDI. Conversely, mice lacking SP, CGRP or the SP receptor (neurokinin 1 receptor) show reduced pathology in both models of caecal TcdB injection and CDI. Blocking SP or CGRP signalling reduces tissue damage and C. difficile burden in mice infected with a standard C. difficile strain or with hypervirulent strains expressing the TcdB2 variant. Thus, targeting neurogenic inflammation provides a host-oriented therapeutic approach for treating CDI.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Inflamación Neurogénica , Neuronas Aferentes , Pericitos , Animales , Ratones , Toxinas Bacterianas/administración & dosificación , Toxinas Bacterianas/farmacología , Péptido Relacionado con Gen de Calcitonina/antagonistas & inhibidores , Péptido Relacionado con Gen de Calcitonina/metabolismo , Clostridioides difficile/patogenicidad , Infecciones por Clostridium/microbiología , Inflamación Neurogénica/inducido químicamente , Inflamación Neurogénica/microbiología , Inflamación Neurogénica/patología , Pericitos/efectos de los fármacos , Pericitos/microbiología , Pericitos/patología , Receptores de Neuroquinina-1/metabolismo , Sustancia P/antagonistas & inhibidores , Sustancia P/metabolismo , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/microbiología , Neuronas Aferentes/patología , Mediadores de Inflamación/metabolismo , Ciego/efectos de los fármacos , Ciego/metabolismo , Transducción de Señal/efectos de los fármacos
2.
PLoS Biol ; 20(11): e3001351, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36342970

RESUMEN

Pyrin is a cytosolic immune sensor that nucleates an inflammasome in response to inhibition of RhoA by bacterial virulence factors, triggering the release of inflammatory cytokines, including IL-1ß. Gain-of-function mutations in the MEFV gene encoding Pyrin cause autoinflammatory disorders, such as familial Mediterranean fever (FMF) and Pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND). To precisely define the role of Pyrin in pathogen detection in human immune cells, we compared initiation and regulation of the Pyrin inflammasome response in monocyte-derived macrophages (hMDM). Unlike human monocytes and murine macrophages, we determined that hMDM failed to activate Pyrin in response to known Pyrin activators Clostridioides difficile (C. difficile) toxins A or B (TcdA or TcdB), as well as the bile acid analogue BAA-473. The Pyrin inflammasome response was enabled in hMDM by prolonged priming with either LPS or type I or II interferons and required an increase in Pyrin expression. Notably, FMF mutations lifted the requirement for prolonged priming for Pyrin activation in hMDM, enabling Pyrin activation in the absence of additional inflammatory signals. Unexpectedly, in the absence of a Pyrin response, we found that TcdB activated the NLRP3 inflammasome in hMDM. These data demonstrate that regulation of Pyrin activation in hMDM diverges from monocytes and highlights its dysregulation in FMF.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Fiebre Mediterránea Familiar , Humanos , Ratones , Animales , Pirina/genética , Pirina/metabolismo , Fiebre Mediterránea Familiar/genética , Fiebre Mediterránea Familiar/metabolismo , Inflamasomas/metabolismo , Mutación , Macrófagos/metabolismo
3.
Mol Microbiol ; 117(2): 493-507, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34931374

RESUMEN

TcdB is a potent cytotoxin produced by pathogenic Clostridioides difficile that inhibits Rho GTPases by mono-glucosylation. TcdB enters cells via receptor-mediated endocytosis. The pathogenic glucosyltransferase domain (GTD) egresses endosomes by pH-mediated conformational changes, and is subsequently released in an autoproteolytic manner. We here investigated the uptake, localization and degradation of TcdB. TcdB colocalized with lysosomal marker protein LAMP1, verifying the endosomal-lysosomal route of the toxin. In pulse assays endocytosed TcdB declined to a limit of detection within 2 hr, whereas the released GTD accumulated for up to 8 hr. We observed that autoproteolytic deficient TcdB NXN C698S was degraded significantly faster than wildtype TcdB, suggesting interference of TcdB with lysosomal degradation process. In fact, TcdB reduced lysosomal degradation of endosome cargo as tested with DQ-Green BSA. Lysosomal dysfunction was accompanied by perinuclear accumulation of LAMP1 and a weaker detection in immunoblots. Galectin-8 or galectin-3 was not recruited to lysosomes speaking against lysosome membrane damage. Changes in the autophagosomal marker LC3B suggested additional indirect effect of lysosomal dysfunction on the autophagic flux. In contrast to necrotic signaling induced in by TcdB, lysosomal dysfunction was not abolished by calcium channel blocker nifedipin, indicating separate cytopathogenic effects induced by TcdB during endo-lysosomal trafficking.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Lisosomas/metabolismo
4.
Nature ; 538(7625): 350-355, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27680706

RESUMEN

Clostridium difficile toxin B (TcdB) is a critical virulence factor that causes diseases associated with C. difficile infection. Here we carried out CRISPR-Cas9-mediated genome-wide screens and identified the members of the Wnt receptor frizzled family (FZDs) as TcdB receptors. TcdB binds to the conserved Wnt-binding site known as the cysteine-rich domain (CRD), with the highest affinity towards FZD1, 2 and 7. TcdB competes with Wnt for binding to FZDs, and its binding blocks Wnt signalling. FZD1/2/7 triple-knockout cells are highly resistant to TcdB, and recombinant FZD2-CRD prevented TcdB binding to the colonic epithelium. Colonic organoids cultured from FZD7-knockout mice, combined with knockdown of FZD1 and 2, showed increased resistance to TcdB. The colonic epithelium in FZD7-knockout mice was less susceptible to TcdB-induced tissue damage in vivo. These findings establish FZDs as physiologically relevant receptors for TcdB in the colonic epithelium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Colon/metabolismo , Epitelio/metabolismo , Receptores Frizzled/metabolismo , Animales , Antígenos/metabolismo , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Sitios de Unión , Células CHO , Sistemas CRISPR-Cas , Línea Celular , Clostridioides difficile/patogenicidad , Cricetulus , Femenino , Receptores Frizzled/química , Receptores Frizzled/deficiencia , Receptores Frizzled/genética , Técnicas de Inactivación de Genes , Humanos , Masculino , Ratones , Ratones Noqueados , Oligopéptidos/química , Oligopéptidos/metabolismo , Organoides/metabolismo , Dominios Proteicos , Proteoglicanos/metabolismo , Factores de Virulencia/metabolismo , Proteínas Wnt/metabolismo
5.
Int J Mol Sci ; 23(8)2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-35457076

RESUMEN

A Clostridioides difficile infection (CDI) is the most common nosocomial infection worldwide. The main virulence factors of pathogenic C. difficile are TcdA and TcdB, which inhibit small Rho-GTPases. The inhibition of small Rho-GTPases leads to the so-called cytopathic effect, a reorganization of the actin cytoskeleton, an impairment of the colon epithelium barrier function and inflammation. Additionally, TcdB induces a necrotic cell death termed pyknosis in vitro independently from its glucosyltransferases, which are characterized by chromatin condensation and ROS production. To understand the underlying mechanism of this pyknotic effect, we conducted a large-scale phosphoproteomic study. We included the analysis of alterations in the phosphoproteome after treatment with TcdA, which was investigated for the first time. TcdA exhibited no glucosyltransferase-independent necrotic effect and was, thus, a good control to elucidate the underlying mechanism of the glucosyltransferase-independent effect of TcdB. We found RAS to be a central upstream regulator of the glucosyltransferase-independent effect of TcdB. The inhibition of RAS led to a 68% reduction in necrosis. Further analysis revealed apolipoprotein C-III (APOC3) as a possible crucial factor of CDI-induced inflammation in vivo.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Infecciones por Clostridium , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides , Enterotoxinas/metabolismo , Células Epiteliales/metabolismo , GTP Fosfohidrolasas , Glucosiltransferasas/metabolismo , Humanos , Inflamación , Necrosis
6.
Cell Microbiol ; 20(10): e12865, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29904993

RESUMEN

Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species-mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect. ECD only occurs when TcdB is rapidly endocytosed. This was shown by generation of chimeras using the trunk of TcdB from a hypervirulent strain. TcdB from hypervirulent strain has been described to translocate from endosomes at higher pH values and thus, meaning faster than reference type TcdB. Accordingly, intracellular delivery of the glucosyltransferase domain of reference TcdB by the trunk of TcdB from hypervirulent strain increased ECD. Furthermore, proton transporters such as sodium/proton exchanger (NHE) or the ClC-5 anion/proton exchanger, both of which contribute to endosomal acidification, also affected cytotoxic potency of TcdB: Specific inhibition of NHE reduced cytotoxicity, whereas transfection of cells with the endosomal anion/proton exchanger ClC-5 increased cytotoxicity of TcdB. Our data suggest that both the uptake rate of TcdB into the cytosol and the status of nonglucosylated Rac1 are key determinants that are decisive for whether ECD or delayed apoptosis is triggered.


Asunto(s)
Apoptosis/fisiología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/patogenicidad , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Línea Celular , Glicosilación , Células HEK293 , Humanos , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Curr Top Microbiol Immunol ; 406: 79-96, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27380268

RESUMEN

Two characteristics of toxins A and B from C. difficile (TcdA, TcdB) are important for the understanding of the pathogenic effect of these homologous toxins. First, these toxins are huge single-chain but multidomain proteins that display their action intracellularly within the cytosol of host cells. And second, albeit various cell types highly differ in their sensitivity toward these toxins, no toxin-resistant cell type has been described yet. Investigation of receptor-mediated uptake of these toxins is very ambitious. It demands discrimination between cell surface binding, interaction with more than one functional receptor responsible for uptake as well as other functional receptors that recognize bacterial pathogens and are not necessarily related with endocytosis. The current understanding of a complex uptake process is that TcdB interacts with at least two facultative receptors that mediate entry into host cells by redundant endocytotic pathways. Although both homologous toxins do obviously not share the same receptors, this principle of redundant binding domains found for TcdB does also account for TcdA.


Asunto(s)
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Clostridioides difficile , Endocitosis , Receptores de Superficie Celular/metabolismo
8.
Proteomics ; 17(15-16)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28612519

RESUMEN

Toxin B (TcdB) of the nosocomial pathogen C. difficile has been reported to exhibit a glucosyltransferase-dependent and -independent effect on treated HEp-2 cells at toxin concentration above 0.3 nM. In order to investigate and further characterize both effects epithelial cells were treated with wild type TcdB and glucosyltransferase-deficient TcdBNXN and their proteomes were analyzed by LC-MS. Triplex SILAC labeling was used for quantification. Identification of 5212 and quantification of 4712 protein groups was achieved. Out of these 257 were affected by TcdB treatment, 92 by TcdBNXN treatment and 49 by both. TcdB mainly led to changes in proteins that are related to "GTPase mediated signaling" and the "cytoskeleton" while "chromatin" and "cell cycle" related proteins were altered by both, TcdB and TcdBNXN . The obtained dataset of HEp-2 cell proteome helps us to better understand glucosyltransferase-dependent and -independent mechanisms of TcdB and TcdBNXN , particularly those involved in pyknotic cell death. All proteomics data have been deposited in the ProteomeXchange with the dataset identifier PXD006658 (https://proteomecentral.proteomexchange.org/dataset/PXD006658).


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucosiltransferasas/metabolismo , Neoplasias Laríngeas/metabolismo , Proteoma/análisis , Proteómica/métodos , Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Muerte Celular , Línea Celular Tumoral , Cromatografía Liquida/métodos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/fisiología , Humanos , Neoplasias Laríngeas/tratamiento farmacológico , Neoplasias Laríngeas/patología , Espectrometría de Masas/métodos , Proteoma/efectos de los fármacos , Proteoma/metabolismo
9.
Proteomics ; 17(9)2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28252257

RESUMEN

Large clostridial toxins mono-O-glucosylate small GTPases of the Rho and Ras subfamily. As a result of glucosylation, the GTPases are inhibited and thereby corresponding downstream signaling pathways are disturbed. Current methods for quantifying the extent of glucosylation include sequential [14 C]glucosylation, sequential [32 P]ADP-ribosylation, and Western Blot detection of nonglucosylated GTPases, with neither method allowing the quantification of the extent of glucosylation of an individual GTPase. Here, we describe a novel MS-based multiplexed MRM assay to specifically quantify the glucosylation degree of small GTPases. This targeted proteomics approach achieves a high selectivity and reproducibility, which allows determination of the in vivo substrate pattern of glucosylating toxins. As proof of principle, GTPase glucosylation was analyzed in CaCo-2 cells treated with TcdA, and glucosylation kinetics were determined for RhoA/B, RhoC, RhoG, Ral, Rap1, Rap2, (H/K/N)Ras, and R-Ras2.


Asunto(s)
Toxinas Bacterianas/análisis , Espectrometría de Masas/métodos , Proteínas de Unión al GTP Monoméricas/análisis , Proteómica/métodos , Células CACO-2 , Cromatografía Liquida , Glicosilación , Humanos , Transducción de Señal
10.
Cell Microbiol ; 17(6): 893-909, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25529763

RESUMEN

Clostridium difficile may induce antibiotic-associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion. Kinetics and profiles of TcdB-induced rise in intracellular-free Ca(2+) and reactive oxygen species production were similar to that induced by fMLF, which activates the formyl peptide receptor (FPR) recognizing formylated bacterial peptide sequences. Transfection assays with the FPR-1 isoform hFPR26 in HEK293 cells, heterologous desensitization experiments and FPR inhibition via cyclosporine H strongly suggest activation of cells via FPR-1. Domain analyses revealed that the N-terminal glucosyltransferase domain of TcdB is a potent activator of FPR pointing towards an additional mechanism that might contribute to pathogenesis. This pro-inflammatory ligand effect can be triggered even by cleaved and, thus, non-cytotoxic toxin. In summary, we report (i) a ligand effect on neutrophils as completely new molecular mode of action, (ii) pathogenic potential of truncated or proteolytically cleaved 'non-cytotoxic' fragments and (iii) an interaction of the N-terminal glucosyltransferase domain instead of the C-terminal receptor binding domain of TcdB with target cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/inmunología , Neutrófilos/inmunología , Neutrófilos/microbiología , Fragmentos de Péptidos/metabolismo , Receptores de Formil Péptido/metabolismo , Células HEK293 , Humanos
11.
J Cell Sci ; 126(Pt 20): 4572-88, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23902686

RESUMEN

Cell migration is commonly accompanied by protrusion of membrane ruffles and lamellipodia. In two-dimensional migration, protrusion of these thin sheets of cytoplasm is considered relevant to both exploration of new space and initiation of nascent adhesion to the substratum. Lamellipodium formation can be potently stimulated by Rho GTPases of the Rac subfamily, but also by RhoG or Cdc42. Here we describe viable fibroblast cell lines genetically deficient for Rac1 that lack detectable levels of Rac2 and Rac3. Rac-deficient cells were devoid of apparent lamellipodia, but these structures were restored by expression of either Rac subfamily member, but not by Cdc42 or RhoG. Cells deficient in Rac showed strong reduction in wound closure and random cell migration and a notable loss of sensitivity to a chemotactic gradient. Despite these defects, Rac-deficient cells were able to spread, formed filopodia and established focal adhesions. Spreading in these cells was achieved by the extension of filopodia followed by the advancement of cytoplasmic veils between them. The number and size of focal adhesions as well as their intensity were largely unaffected by genetic removal of Rac1. However, Rac deficiency increased the mobility of different components in focal adhesions, potentially explaining how Rac - although not essential - can contribute to focal adhesion assembly. Together, our data demonstrate that Rac signaling is essential for lamellipodium protrusion and for efficient cell migration, but not for spreading or filopodium formation. Our findings also suggest that Rac GTPases are crucial to the establishment or maintenance of polarity in chemotactic migration.


Asunto(s)
Movimiento Celular/fisiología , Adhesiones Focales/fisiología , Proteínas de Unión al GTP rac/metabolismo , Actinas/metabolismo , Animales , Fibroblastos/citología , Fibroblastos/metabolismo , Ratones Transgénicos , Neuropéptidos/metabolismo , Seudópodos/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo
12.
Cell Microbiol ; 16(11): 1678-92, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24898616

RESUMEN

TcdA and TcdB are the main pathogenicity factors of Clostridium difficile-associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation. TcdB and the glucosyltransferase-deficient mutant TcdB D286/288N induced pyknotic cell death which was associated with chromatin condensation and reduced H3 phosphorylation. Affected cells showed ballooning of the nuclear envelope and loss of the integrity of the plasma membrane. Furthermore, pyknotic cells were positively stained with dihydroethidium indicating production of reactive oxygen species. In line with this, pyknosis was reduced by apocynin, an inhibitor of the NADPH oxidase. Bafilomycin A1 prevented cytotoxic effects showing that the newly observed pyknosis depends on intracellular action of TcdB rather than on a receptor-mediated effect. Blister formation and chromatin condensation was specifically induced by the glucosyltransferase domain of TcdB from strain VPI10473 since neither TcdBF from cdi1470 nor the chimera of TcdB harbouring the glucosyltransferase domain of TcdBF was able to induce these effects. In summary, TcdB induces two different and independent phenotypes: (i) cell rounding due to glucosylation of Rho GTPases and (ii) shrinkage of cells and nuclear blister induced by the high concentrations of TcdB independent of Rho glucosylation.


Asunto(s)
Proteínas Bacterianas/toxicidad , Toxinas Bacterianas/toxicidad , Muerte Celular , Núcleo Celular/patología , Cromatina/metabolismo , Glucosiltransferasas/toxicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Línea Celular , Membrana Celular/patología , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Glicosilación , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Histonas/metabolismo , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidad , Membrana Nuclear/patología , Fosforilación , Procesamiento Proteico-Postraduccional , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/metabolismo
13.
Rapid Commun Mass Spectrom ; 28(10): 1089-100, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24711272

RESUMEN

RATIONALE: The anaerobe Clostridium difficile is a common pathogen that causes infection of the colon leading to diarrhea or pseudomembranous colitis. Its major virulence factors are toxin A (TcdA) and toxin B (TcdB), which specifically inactivate small GTPases by glucosylation leading to reorganization of the cytoskeleton and finally to cell death. In the present work a quantitative proteome analysis using the isotope-coded protein label (ICPL) approach was conducted to investigate proteome changes in the colon cell line Caco-2 after treatment with recombinant wild-type TcdA (rTcdA-wt) or a glucosyltransferase-deficient mutant TcdA (rTcdA-mut). METHODS: Proteins from crude cell lysates or cellular subfractions were identified by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS). Two time points (5 h, 24 h) of toxin treatment were analyzed and about 4000 proteins were identified in each case. RESULTS: After 5 h treatment with rTcdA-wt, 150 proteins had a significantly altered abundance; rTcdA-mut caused regulation of 50 proteins at this time point. After 24 h treatment with rTcdA-wt changes in abundance of 61 proteins were observed, but no changes in protein abundance were detected after 24 h if cells were treated with rTcdA-mut. TcdA affected several proteins involved in signaling events, cytoskeleton and cell-cell contact organization, translation, and metabolic processes. The ICPL-dependent quantification was verified by label-free targeted MS techniques based on multiple reaction monitoring (MRM) and triple quadrupole mass spectrometry. CONCLUSIONS: LC/MS-based proteome analyses and the ICPL approach revealed comprehensive and reproducible proteome date and provided new insights into the cellular effects of clostridial glucosylating toxins (CGT).


Asunto(s)
Toxinas Bacterianas/toxicidad , Enterotoxinas/toxicidad , Proteoma/efectos de los fármacos , Proteínas Bacterianas/análisis , Proteínas Bacterianas/química , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Células CACO-2 , Núcleo Celular/química , Cromatografía Liquida , Citosol/química , Enterotoxinas/química , Enterotoxinas/genética , Humanos , Mutación , Proteoma/análisis , Proteoma/química , Espectrometría de Masa por Ionización de Electrospray
14.
J Proteome Res ; 12(4): 1604-18, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23387933

RESUMEN

Clostridium difficile is the major cause of intestinal infections in hospitals. The major virulence factors are toxin A (TcdA) and toxin B (TcdB), which belong to the group of clostridial glucosylating toxins (CGT) that inactivate small GTPases. After a 24 h incubation period with TcdA or a glucosyltransferase-deficient mutant TcdA (gdTcdA), quantitative changes in the proteome of colonic cells (Caco-2) were analyzed using high-resolution LC-MS/MS and the SILAC technique. The changes in abundance of more than 5100 proteins were quantified. Nearly 800 toxin-responsive proteins were identified that were involved in cell cycle, cell structure, and adhesion as well as metabolic processes. Several proteins localized to mitochondria or involved in lipid metabolism were consistently of higher abundance after TcdA treatment. All changes of protein abundance depended on the glucosyltransferase activity of TcdA. Glucosylation of the known targets of TcdA such as RhoA, RhoC, RhoG was detected by LC-MS/MS. In addition, an almost complete glucosylation of Rap1(A/B), Rap2(A/B/C) and a partial glucosylation of Ral(A/B) and (H/K/N)Ras were detected. The glucosylation pattern of TcdA was compared to that of other CGT like TcdB, the variant TcdB from C. difficile strain VPI 1470 (TcdBF), and lethal toxin from C. sordellii (TcsL).


Asunto(s)
Toxinas Bacterianas/metabolismo , Células CACO-2/metabolismo , Enterotoxinas/metabolismo , Interacciones Huésped-Patógeno , Proteínas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/genética , Toxinas Bacterianas/farmacología , Células CACO-2/efectos de los fármacos , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Enterotoxinas/genética , Enterotoxinas/farmacología , Glicosilación , Humanos , Proteínas/análisis , Proteómica/métodos , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Proteínas de Unión al GTP rap , Proteínas de Unión al GTP rap1 , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteína rhoC de Unión a GTP
15.
Hum Mol Genet ; 20(24): 4865-78, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-21920940

RESUMEN

Spinal muscular atrophy (SMA), a frequent neurodegenerative disease, is caused by reduced levels of functional survival of motoneuron (SMN) protein. SMN is involved in multiple pathways, including RNA metabolism and splicing as well as motoneuron development and function. Here we provide evidence for a major contribution of the Rho-kinase (ROCK) pathway in SMA pathogenesis. Using an in vivo protein interaction system based on SUMOylation of proteins, we found that SMN is directly interacting with profilin2a. Profilin2a binds to a stretch of proline residues in SMN, which is heavily impaired by a novel SMN2 missense mutation (S230L) derived from a SMA patient. In different SMA models, we identified differential phosphorylation of the ROCK-downstream targets cofilin, myosin-light chain phosphatase and profilin2a. We suggest that hyper-phosphorylation of profilin2a is the molecular link between SMN and the ROCK pathway repressing neurite outgrowth in neuronal cells. Finally, we found a neuron-specific increase in the F-/G-actin ratio that further support the role of actin dynamics in SMA pathogenesis.


Asunto(s)
Atrofia Muscular Espinal/metabolismo , Profilinas/metabolismo , Transducción de Señal , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Quinasas Asociadas a rho/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Conos de Crecimiento/metabolismo , Conos de Crecimiento/patología , Humanos , Ratones , Modelos Biológicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Proteínas Mutantes/metabolismo , Mutación Missense/genética , Neuritas/metabolismo , Fosforilación , Unión Proteica , Ratas , Proteína 1 para la Supervivencia de la Neurona Motora/genética
16.
Toxins (Basel) ; 15(1)2023 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-36668874

RESUMEN

Background: Clostridioides difficile binary toxin (CDT) defines the hypervirulence of strains in nosocomial antibiotic-induced colitis with the highest mortality. The objective of our study was to investigate the impact of CDT on the intestinal epithelial barrier and to enlighten the underlying molecular mechanisms. Methods: Functional measurements of epithelial barrier function by macromolecular permeability and electrophysiology were performed in human intestinal HT-29/B6 cell monolayers. Molecular analysis of the spatial distribution of tight junction protein and cytoskeleton was performed by super-resolution STED microscopy. Results: Sublethal concentrations of CDT-induced barrier dysfunction with decreased TER and increased permeability for 332 Da fluorescein and 4 kDa FITC-dextran. The molecular correlate to the functional barrier defect by CDT was found to be a tight junction protein subcellular redistribution with tricellulin, occludin, and claudin-4 off the tight junction domain. This redistribution was shown to be MLCK-dependent. Conclusions: CDT compromised epithelial barrier function in a human intestinal colonic cell model, even in sublethal concentrations, pointing to barrier dysfunction in the intestine and leak flux induction as a diarrheal mechanism. However, this cannot be attributed to the appearance of apoptosis and necrosis, but rather to an opening of the paracellular leak pathway as the result of epithelial tight junction alterations.


Asunto(s)
Clostridioides difficile , Enfermedades Gastrointestinales , Enfermedades Intestinales , Humanos , Células Epiteliales/metabolismo , Clostridioides , Células HT29 , Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Mucosa Intestinal/metabolismo , Permeabilidad , Células CACO-2
17.
Toxins (Basel) ; 15(11)2023 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-37999506

RESUMEN

BACKGROUND: Clostridioides difficile toxins TcdA and TcdB are responsible for diarrhea and colitis. Lack of functional studies in organoid models of the gut prompted us to elucidate the toxin's effects on epithelial barrier function and the molecular mechanisms for diarrhea and inflammation. METHODS: Human adult colon organoids were cultured on membrane inserts. Tight junction (TJ) proteins and actin cytoskeleton were analyzed for expression via Western blotting and via confocal laser-scanning microscopy for subcellular localization. RESULTS: Polarized intestinal organoid monolayers were established from stem cell-containing colon organoids to apply toxins from the apical side and to perform functional measurements in the organoid model. The toxins caused a reduction in transepithelial electrical resistance in human colonic organoid monolayers with sublethal concentrations. Concomitantly, we detected increased paracellular permeability fluorescein and FITC-dextran-4000. Human colonic organoid monolayers exposed to the toxins exhibited redistribution of barrier-forming TJ proteins claudin-1, -4 and tricellulin, whereas channel-forming claudin-2 expression was increased. Perijunctional F-actin cytoskeleton organization was affected. CONCLUSIONS: Adult stem cell-derived human colonic organoid monolayers were applicable as a colon infection model for electrophysiological measurements. The TJ changes noted can explain the epithelial barrier dysfunction and diarrhea in patients, as well as increased entry of luminal antigens triggering inflammation.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Humanos , Proteínas de Uniones Estrechas/metabolismo , Toxinas Bacterianas/toxicidad , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Uniones Estrechas/metabolismo , Clostridioides , Colon , Diarrea , Inflamación/metabolismo , Organoides , Mucosa Intestinal
18.
Biol Chem ; 393(1-2): 77-84, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22628301

RESUMEN

Toxin A (TcdA) and toxin B (TcdB) are the major virulence factors of Clostridium difficile-associated diarrhoea (CDAD). TcdA and TcdB mono-glucosylate small GTPases of the Rho family, thereby causing actin re-organisation in colonocytes, resulting in the loss of colonic barrier function. The hydrophilic bile acid tauroursodeoxycholic acid (TUDCA) is an approved drug for the treatment of cholestasis and biliary cirrhosis. In this study, TUDCA-induced activation of Akt1 is presented to increase cellular levels of pS71-Rac1/Cdc42 in human hepatocarcinoma (HepG2) cells, showing for the first time that bile acid signalling affects the activity of Rho proteins. Rac1/Cdc42 phosphorylation, in turn, protects Rac1/Cdc42 from TcdB-catalysed glucosylation and reduces the TcdB-induced cytopathic effects in HepG2 cells. The results of this study indicate that TUDCA may prove useful as a therapeutic agent for the treatment of CDAD.


Asunto(s)
Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Biocatálisis , Clostridioides difficile/química , Ácido Tauroquenodesoxicólico/farmacología , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteínas Bacterianas/farmacología , Toxinas Bacterianas/farmacología , Biocatálisis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glicosilación/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Células Tumorales Cultivadas , Proteína de Unión al GTP cdc42/química , Proteína de Unión al GTP rac1/química
19.
Microb Pathog ; 52(1): 92-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22107906

RESUMEN

The small open reading frame tcdE is located between the genes tcdA and tcdB which encode toxin A (TcdA) and B (TcdB), respectively, within the pathogenicity locus of Clostridium difficile. Sequence and structure similarities to bacteriophage-encoded holins have led to the assumption that TcdE mediates the release of the toxins from C. difficile into the extracellular environment. A TcdE-deficient C. difficile 630 strain was generated by insertional inactivation of the tcdE gene. Data revealed that TcdE does not regulate or affect growth or sporogenesis. TcdE-deficiency was accompanied by a moderately increased accumulation of TcdA and TcdB prior to sporulation in this microorganism. Interestingly, this observation did not correlate with a delayed or inhibited toxin release: inactivation of TcdE neither significantly altered kinetics of release nor the absolute level of secreted TcdA and TcdB, indicating that TcdE does not account for the pathogenicity of C. difficile strain 630. Furthermore, mass spectrometry analysis could not reveal differences in the secretome of wild type and TcdE-deficient C. difficile, indicating that TcdE did not function as a secretion system for protein release. TcdE was expressed as a 19 kDa protein in C. difficile, whereas TcdE expressed in Escherichia coli appeared as a 19 and 16 kDa protein. Expression of the short 16 kDa TcdE correlated with bacterial cell death. We conclude that TcdE does not exhibit pore-forming function in C. difficile since in these cells only the non-lytic full length 19 kDa protein is expressed.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Silenciador del Gen , Toxinas Bacterianas/genética , Línea Celular , Clostridioides difficile/genética , Enterotoxinas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , Transporte de Proteínas
20.
Nat Commun ; 13(1): 6786, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351897

RESUMEN

Toxin B (TcdB) is a major exotoxin responsible for diseases associated with Clostridioides difficile infection. Its sequence variations among clinical isolates may contribute to the difficulty in developing effective therapeutics. Here, we investigate receptor-binding specificity of major TcdB subtypes (TcdB1 to TcdB12). We find that representative members of subtypes 2, 4, 7, 10, 11, and 12 do not recognize the established host receptor, frizzled proteins (FZDs). Using a genome-wide CRISPR-Cas9-mediated screen, we identify tissue factor pathway inhibitor (TFPI) as a host receptor for TcdB4. TFPI is recognized by a region in TcdB4 that is homologous to the FZD-binding site in TcdB1. Analysis of 206 TcdB variant sequences reveals a set of six residues within this receptor-binding site that defines a TFPI binding-associated haplotype (designated B4/B7) that is present in all TcdB4 members, a subset of TcdB7, and one member of TcdB2. Intragenic micro-recombination (IR) events have occurred around this receptor-binding region in TcdB7 and TcdB2 members, resulting in either TFPI- or FZD-binding capabilities. Introduction of B4/B7-haplotype residues into TcdB1 enables dual recognition of TFPI and FZDs. Finally, TcdB10 also recognizes TFPI, although it does not belong to the B4/B7 haplotype, and shows species selectivity: it recognizes TFPI of chicken and to a lesser degree mouse, but not human, dog, or cattle versions. These findings identify TFPI as a TcdB receptor and reveal IR-driven changes on receptor-specificity among TcdB variants.


Asunto(s)
Toxinas Bacterianas , Clostridioides difficile , Animales , Bovinos , Perros , Ratones , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Clostridioides difficile/genética , Recombinación Genética , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda