Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Negl Trop Dis ; 10(10): e0005058, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27755544

RESUMEN

BACKGROUND: The lack of new anthelmintic agents is of growing concern because it affects human health and our food supply, as both livestock and plants are affected. Two principal factors contribute to this problem. First, nematode resistance to anthelmintic drugs is increasing worldwide and second, many effective nematicides pose environmental hazards. In this paper we address this problem by deploying a high throughput screening platform for anthelmintic drug discovery using the nematode Caenorhabditis elegans as a surrogate for infectious nematodes. This method offers the possibility of identifying new anthelmintics in a cost-effective and timely manner. METHODS/PRINCIPAL FINDINGS: Using our high throughput screening platform we have identified 14 new potential anthelmintics by screening more than 26,000 compounds from the Chembridge and Maybridge chemical libraries. Using phylogenetic profiling we identified a subset of the 14 compounds as potential anthelmintics based on the relative sensitivity of C. elegans when compared to yeast and mammalian cells in culture. We showed that a subset of these compounds might employ mechanisms distinct from currently used anthelmintics by testing diverse drug resistant strains of C. elegans. One of these newly identified compounds targets mitochondrial complex II, and we used structural analysis of the target to suggest how differential binding of this compound may account for its different effects in nematodes versus mammalian cells. CONCLUSIONS/SIGNIFICANCE: The challenge of anthelmintic drug discovery is exacerbated by several factors; including, 1) the biochemical similarity between host and parasite genomes, 2) the geographic location of parasitic nematodes and 3) the rapid development of resistance. Accordingly, an approach that can screen large compound collections rapidly is required. C. elegans as a surrogate parasite offers the ability to screen compounds rapidly and, equally importantly, with specificity, thus reducing the potential toxicity of these compounds to the host and the environment. We believe this approach will help to replenish the pipeline of potential nematicides.


Asunto(s)
Antinematodos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Infecciones por Nematodos/parasitología , Animales , Caenorhabditis elegans/fisiología , Evaluación Preclínica de Medicamentos , Humanos , Nematodos/efectos de los fármacos , Nematodos/genética , Nematodos/fisiología , Infecciones por Nematodos/tratamiento farmacológico , Genética Inversa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda