Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Rapid Commun Mass Spectrom ; 34(5): e8604, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756774

RESUMEN

RATIONALE: Strontium isotopes are valuable markers of provenance in a range of disciplines. Limited amounts of Sr in low-mass samples such as insects mean that conventional Sr isotope analysis precludes their use for geographic origins in many ecological studies or in applications such as biosecurity. Here we test the viability of using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) with N2 O as a reaction gas for accurately determining Sr isotopes in insects with Sr < 100 ng. METHODS: Strontium isotopes were determined in solution mode using ICP-MS/MS with 0.14 L/min N2 O as a reaction gas to convert Sr+ into SrO+ for in-line separation of 87 Sr from 87 Rb. The Sr isotope reference standards NIST SRM 987, NIST SRM 1570a and NIST SRM 1547 were used to assess accuracy and reproducibility. Ten insect species collected from the wild as a proof-of-principle application were analysed for Sr concentration and Sr isotopes. RESULTS: Using ICP-MS/MS we show for the first time that internal mass bias correction of 87 Sr16 O/86 Sr16 O based on 88 Sr16 O/86 Sr16 O works to give for NIST SRM 987 a 87 Sr/86 Sr ratio of 0.7101 ± 0.012 (RSD = 0.17%) and for NIST SRM 1570a a 87 Sr/86 Sr ratio of 0.7100 ± 0.009 (RSD = 0.12%), which are within error of the accepted values. The first 87 Sr/86 Sr ratio of NIST SRM 1547 is 0.7596 ± 0.0014. Strontium analyses were run on 0.8 mL of 0.25-0.5 ppb Sr, which equates to 2-4 ng of Sr. Strontium isotope analysis with a precision of >99.8% can be achieved with in-line separation of 87 Sr from 87 Rb at least up to solutions with 25 ppb Rb. CONCLUSIONS: A minimum of 5 mg of insect tissue is required for Sr isotope analysis. This new ICP-MS/MS method enables Sr isotope analysis in single insects, allowing population-scale studies to be feasible and making possible applications with time-critical uses such as biosecurity.


Asunto(s)
Insectos/química , Isótopos de Estroncio/análisis , Espectrometría de Masas en Tándem/métodos , Animales , Gases , Límite de Detección , Óxido Nitroso/química , Queensland , Radioisótopos de Rubidio/análisis
2.
Sci Total Environ ; 763: 142984, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33498122

RESUMEN

Bioavailability is a critical facet of metal toxicity. Although past studies have investigated the individual role of sediment physico-chemical properties in relation to the bioavailability of heavy metals, their collective effects are little-known. Further, limited knowledge exists on the contribution of nutrients to metal bioavailability. In this study, the influence of physico-chemical properties of sediments, including total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), cation exchange capacity (CEC), specific surface area (SSA), and mineralogical composition to metal bioavailability is reported. The weak-acid extraction method was used to measure Cd, Cr, Cu, Ni, Pb and Zn as the potentially bioavailable fraction in sediments in an urban creek. The results confirmed that Cu has strong selectivity for organic matter (r = 0.814, p < 0.01). Cr bioavailability was influenced by either sediment mineralogy, nutrients, CEC or SSA. Zn, Ni and Pb showed strong affinity to mineral oxides, though their preferred binding positions were with nutrients, particularly organic matter (r = 0.794, 0.809, and 0.753, p < 0.01, respectively). The adsorption of Cd was strongly influenced by the competition with other metals and its bioavailability was weakly influenced by ion exchange (CEC: r = 0.424, p < 0.01). The study results indicate that nitrogen and phosphorus compounds can elevate metal bioavailability due to complexation reactions. Generally, the estuarine area was more favourable for the adsorption of weakly-bound metals. This is concerning as estuaries generate high biogeochemical activity and are economically important.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Disponibilidad Biológica , China , Monitoreo del Ambiente , Sedimentos Geológicos , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda