Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Biometals ; 34(1): 97-105, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33237470

RESUMEN

To determine the effects of repeated physical activity on iron and zinc homeostases in a living system, we quantified blood and tissue levels of these two metals in sedentary and physically active Long-Evans rats. At post-natal day (PND) 22, female rats were assigned to either a sedentary or an active treatment group (n = 10/group). The physically active rats increased their use of a commercially-constructed stainless steel wire wheel so that, by the end of the study (PND 101), they were running an average of 512.8 ± 31.9 (mean ± standard error) min/night. After euthanization, plasma and aliquots of liver, lung, heart, and gastrocnemius muscle were obtained. Following digestion, non-heme iron and zinc concentrations in plasma and tissues were measured using inductively coupled plasma optical emission spectroscopy. Concentrations of both non-heme iron and zinc in plasma and liver were significantly decreased among the physically active rats relative to the sedentary animals. In the lung, both metals were increased in concentration among the physically active animals but the change in zinc did not reach significance. Similarly, tissue non-heme iron and zinc levels were both increased in heart and muscle from the physically active group. It is concluded that repeated physical activity in an animal model can be associated with a translocation of both iron and zinc from sites of storage (e.g. liver) to tissues with increased metabolism (e.g. the lung, heart, and skeletal muscle).


Asunto(s)
Homeostasis/efectos de los fármacos , Hierro/farmacología , Zinc/farmacología , Animales , Femenino , Hierro/análisis , Condicionamiento Físico Animal , Ratas , Ratas Long-Evans , Conducta Sedentaria , Zinc/análisis
2.
Disaster Med Public Health Prep ; 17: e473, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650226

RESUMEN

OBJECTIVE: The effects of named weather storms on the rates of penetrating trauma is poorly understood with only case reports of single events currently guiding public health policy. This study examines whether tropical storms and hurricanes contribute to trauma services and volume. METHODS: This was a cross-sectional review of tropical storms/hurricanes affecting New Orleans, Louisiana, during hurricane seasons (June 1-November 30) from 2010-2021, and their association with the rate of penetrating trauma. Authors sought to determine how penetrating trauma rates changed during hurricane seasons and associate them with demographic variables. RESULTS: There were 5531 penetrating injuries, with 412 (7.4%) occurring during landfall and 554 (10.0%) in the aftermath. Black/African Americans were the most affected. There was an increase in the rate of penetrating events during landfall (3.4 events/day) and aftermath (3.5 events/day) compared to the baseline (2.8 events/day) (P = < 0.001). Using multivariate analysis, wind speed was positively related to firearm injury, whereas the rainfall total was inversely related to firearm violence rates during landfall and aftermath periods. Self-harm was positively related to distance from the trauma center. CONCLUSIONS: Cities at risk for named weather storms may face increasing gun violence in the landfall and aftermath periods. Black/African Americans are most affected, worsening existing disparities. Self-harm may also increase following these weather events.


Asunto(s)
Tormentas Ciclónicas , Armas de Fuego , Heridas por Arma de Fuego , Humanos , Nueva Orleans/epidemiología , Estudios Transversales
3.
Cell Mol Bioeng ; 15(6): 571-585, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36531860

RESUMEN

Introduction: Under conditions of limited iron availability, plants and microbes have evolved mechanisms to acquire iron. For example, metal deficiency stimulates reprogramming of carbon metabolism, increasing activity of enzymes involved in the Krebs cycle and the glycolytic pathway. Resultant carboxylates/hydroxycarboxylates then function as ligands to complex iron and facilitate solubilization and uptake, reversing the metal deficiency. Similarly, human intestinal epithelial cells may produce lactate, a hydroxycarboxylate, during absolute and functional iron deficiency to import metal to reverse limited availability. Methods: Here we investigate (1) if lactate can increase cell metal import of epithelial cells in vitro, (2) if lactate dehydrogenase (LDH) activity in and lactate production by epithelial cells correspond to metal availability, and (3) if blood concentrations of LDH in a human cohort correlate with indices of iron homeostasis. Results: Results show that exposures of human epithelial cells, Caco-2, to both sodium lactate and ferric ammonium citrate (FAC) increase metal import relative to FAC alone. Similarly, fumaric, isocitric, malic, and succinic acid coincubation with FAC increase iron import relative to FAC alone. Increased iron import following exposures to sodium lactate and FAC elevated both ferritin and metal associated with mitochondria. LDH did not change after exposure to deferoxamine but decreased with 24 h exposure to FAC. Lactate levels revealed decreased levels with FAC incubation. Review of the National Health and Nutrition Examination Survey demonstrated significant negative relationships between LDH concentrations and serum iron in human cohorts. Conclusions: Therefore, we conclude that iron import in human epithelial cells can involve lactate, LDH activity can reflect the availability of this metal, and blood LDH concentrations can correlate with indices of iron homeostasis.

4.
Sci Rep ; 8(1): 6313, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679034

RESUMEN

The Enteric Nervous System (ENS) is a complex network of neurons and glia, which regulates sensorimotor function throughout the gastroinestinal tract (GI). Here we investigated the role of the ENS and intestinal myofibroblasts in the maintenance of a primary intestinal epithelial barrier through regulation of monolayer permeability, cytokine production, and differentiation of intestinal stem cells. Utilizing a novel, in vitro, transwell-based coculture system, murine small intestinal stem cells were isolated and cultured with ENS neurons and glia or subepithelial myofibroblasts. Results show that the ENS contributes to regulation of intestinal stem cell fate, promoting differentiation into chemosensory enteroendocrine cells, with 0.9% of cells expressing chromogranin A when cultured with ENS versus 0.6% in cocultures with myofibroblasts and 0.3% in epithelial cultures alone. Additionally, enteric neurons and myofibroblasts differentially release cytokines Macrophage Inflammatory Protein 2 (MIP-2), Transforming Growth Factor beta 1 (TGF-ß1), and Interleukin 10 (IL-10) when cultured with intestinal epithelial cells, with a 1.5 fold increase of IL-10 and a 3 fold increase in MIP-2 in ENS cocultures compared to coculture with myofibroblasts. These results indicate the importance of enteric populations in the regulation of intestinal barrier function.


Asunto(s)
Diferenciación Celular/fisiología , Sistema Nervioso Entérico/metabolismo , Mucosa Intestinal/metabolismo , Animales , Línea Celular , Quimiocina CXCL2/metabolismo , Técnicas de Cocultivo/métodos , Células Enteroendocrinas , Células Epiteliales/metabolismo , Interleucina-10/metabolismo , Mucosa Intestinal/fisiología , Intestino Delgado , Intestinos/fisiología , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Células Madre , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda