Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Comput Intell Neurosci ; 2022: 9776776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36188708

RESUMEN

The agricultural domain in developing countries is mostly dictated by archaic rules based on traditions and inherited practices. With the evolution of digitalization and technology, it seems essential to apply new technologies to the agricultural field. Among the technologies to be exploited in agriculture, we mention sensors, IoT, WSN, cloud, blockchain, etc. We talk about smart agriculture in this case. In this paper, we propose a platform secured by blockchain for monitoring and securing production. This platform uses IoT connected sensors to track and save data. Our system is used to monitor the production process of olive trees. The goal is to track everything that enters and leaves our olive tree production from fertilizers, insecticides, and fortifiers to olives, trimming etc. The blockchain via its decentralized system allow a secure, irreversible, and clear monitoring. A dashboard allow us to highlight the changes while facilitating the work of farmers. Our prototype will be embedded via a Raspberry Pi 4 platform.


Asunto(s)
Cadena de Bloques , Insecticidas , Olea , Fertilizantes
2.
J Healthc Eng ; 2021: 9938646, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34007432

RESUMEN

A Brain-Computer Interface (BCI) is a system used to communicate with an external world through the brain activity. The brain activity is measured by electroencephalography (EEG) signal and then processed by a BCI system. EEG source reconstruction could be a way to improve the accuracy of EEG classification in EEG based brain-computer interface (BCI). The source localization of the human brain activities can be an important resource for the recognition of the cognitive state, medical disorders, and a better understanding of the brain in general. In this study, we have compared 51 mother wavelets taken from 7 different wavelet families, which are applied to a Stationary Wavelet Transform (SWT) decomposition of an EEG signal. This process includes Haar, Symlets, Daubechies, Coiflets, Discrete Meyer, Biorthogonal, and reverse Biorthogonal wavelet families in extracting five different brainwave subbands for source localization. For this process, we used the Independent Component Analysis (ICA) for feature extraction followed by the Boundary Element Model (BEM) and the Equivalent Current Dipole (ECD) for the forward and inverse problem solutions. The evaluation results in investigating the optimal mother wavelet for source localization eventually identified the sym20 mother wavelet as the best choice followed by bior6.8 and coif5.


Asunto(s)
Ondas Encefálicas , Interfaces Cerebro-Computador , Algoritmos , Encéfalo , Electroencefalografía/métodos , Humanos , Procesamiento de Señales Asistido por Computador , Análisis de Ondículas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda