Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Curr Microbiol ; 81(9): 294, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095512

RESUMEN

More recently, the application of semiconductor nanomaterials called quantum dots (QDs), has gained considerable attention as they possess tunable optoelectronic and physicochemical properties. There are several routes of QDs synthesis some of which include lithography, molecular beam epitaxy, and chemical reduction. However, most of these methods are expensive, labour intensive, and produce toxic by-products. Hence, the biosynthesis of QDs has been extensively researched for addressing the issues. This review elaborates on the biogenic synthesis of cadmium selenide, cadmium telluride, cadmium sulfide, lead sulfide, and zinc sulfide QDs using bacteria, and fungi. Further, we attempt to identify the underlying mechanism and critical parameters that can control the synthesis of QDs. Eventually, their application in detectors, photovoltaics, biodiesel, photocatalysis, infection-control, and bioimaging are discussed. Thus, biogenic QDs have a tremendous scope in future to emerge as next generation nanotheranostics although thorough pharmacokinetic, and pharmacodynamic studies are required.


Asunto(s)
Bacterias , Compuestos de Cadmio , Hongos , Puntos Cuánticos , Sulfuros , Compuestos de Zinc , Puntos Cuánticos/química , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Hongos/metabolismo , Hongos/efectos de los fármacos , Compuestos de Cadmio/química , Compuestos de Zinc/química , Compuestos de Selenio/química , Plomo/química , Telurio
2.
Microb Pathog ; 150: 104693, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33352215

RESUMEN

The alternative antimicrobial strategies that mitigate the threat of antibiotic resistance is the quorum-sensing inhibition (QSI) mechanism, which targets autoinducer dependent virulence gene expression in bacterial pathogens. N-acyl homoserine lactone (AHL) acts as a key regulator in the production of virulence factors and biofilm formation in Pseudomonas aeruginosa PAO1 and violacein pigment production in Chromobacterium violaceum ATCC 12472. In the present study, the marine sponge Haliclona fibulata symbiont Brevibacterium casei strain Alu 1 showed potential QSI activity in a concentration-dependent manner (0.5-2% v/v) against the N-acyl homoserine lactone (AHL)-mediated violacein production in C. violaceum (75-95%), and biofilm formation (53-96%), protease (27-82%), pyocyanin (82-95%) and pyoverdin (29-38%) productions in P. aeruginosa. Further, the microscopic analyses validated the antibiofilm activity of the cell-free culture supernatant (CFCS) of B. casei against P. aeruginosa. Subsequently, the biofilm and pyoverdin inhibitory efficacy of the ethyl acetate extract of B. casei CFCS was assessed against P. aeruginosa. Further, the gas chromatography-mass spectrometry (GC-MS) analysis revealed the presence of variety of components in which diethyl phthalate was found to be a major active component. This phthalate ester, known as diethyl ester of phthalic acid, could act as a potential therapeutic agent for preventing bacterial biofilm and virulence associated infectious diseases.


Asunto(s)
Poríferos , Percepción de Quorum , Animales , Antibacterianos/farmacología , Biopelículas , Brevibacterium , Chromobacterium , Pseudomonas aeruginosa , Virulencia
3.
J Assoc Physicians India ; 68(4): 26-28, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32610842

RESUMEN

BACKGROUND: Chronic Kidney Disease (CKD) is defined as a disease characterized by alterations in either kidney structure or function or both for a minimum of 3 months duration. New evidences have established new paradigm in the management of CKD patients having Vitamin D deficiency. It appears in some studies that adequate replacement of Vitamin D in deficient population can reduce premature mortality and morbidity in CKD population. AIMS AND OBJECTIVES: This cross-sectional study is designed "To assess Vitamin D status in CKD patients and to correlate Vitamin D status with eGFR. METHODOLOGY: A retrospective cross sectional study on 100 cases of Chronic Kidney Disease patients and matched control subjects in a tertiary care hospital of Eastern India. eGFR was calculated using MDRD-EPI study equation. Vitamin D status was measured using 25(OH) vitamin D levels. Correlation was calculated by Pearson correlation analysis. RESULTS: Among 100 cases, 56 were male and 44 were female. Among 100 control, 53 were female and 47 were male. Among the cases, the mean eGFR was 25.15 ± 11.89. Among the control, the mean eGFR was 87.22 ± 17.82. Among the cases, the mean Vitamin D (Vit D) was 22.57 ± 9.76. Among the control, the mean Vit D was 35.24 ± 10.18. Among the cases, in non-dialysis patients the mean Vit D was 25.66 ± 8.54 and in dialysis patients the mean Vit D was 10.94 ± 2.65. Among the cases, 38 patients had Vit D deficiency (<20), 44 patients had Vit D insufficiency (20-30) and 18 patients had normal Vit D (>30). The positive correlation was found between eGFR and vitamin D level and that was statistically significant. CONCLUSION: Both deficiency and insufficiency of Vitamin D were higher in CKD patients compared to control. Vitamin-D deficiency was more pronounced in advanced stages of CKD. eGFR was strongly associated with serum vitamin-D level.


Asunto(s)
Insuficiencia Renal Crónica , Deficiencia de Vitamina D , Estudios Transversales , Femenino , Humanos , India , Masculino , Estudios Retrospectivos , Vitamina D , Vitaminas
4.
Appl Microbiol Biotechnol ; 102(18): 7693-7701, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29998411

RESUMEN

Copper nanoparticles (CuNPs) and palladium nanoparticles (PdNPs) have attracted wide attention owing to their multifaceted utility in catalysis, sensors, and biomedical applications. Their therapeutic spectrum includes anticancer, antiviral, antibacterial, antifungal, antidiabetic, antioxidant potential which rationalizes the exploration of diverse physical, chemical, and biological routes for fabrication. In this article, we focused on bacterium-assisted design of nanostructured copper and palladium for applications in therapy against multidrug-resistant pathogens, dehalogenation of diatrizoate, Heck coupling of iodobenzene, polymer electric membrane fuel cell, metal recovery, and electronic waste management. Further, hypothesis behind microbial synthesis of PdNPs in E. coli containing [NiFe] hydrogenase Hyd-1 is discussed. Similarly, detailed mechanism of synthesis and stabilization in Cyanobacteria is also documented. Both CuNPs and PdNPs act as potent chemotherapeutic agents that can further be enhanced by conjugation with drugs and/or fluorophores and ligands for simultaneous diagnosis and targeted drug delivery to the cancer site or infection. These bacteriogenic nanoparticles can be used in sensors and pollution control.


Asunto(s)
Cobre/química , Escherichia coli/metabolismo , Nanopartículas del Metal/química , Nanoestructuras/química , Paladio/química , Antibacterianos/metabolismo
5.
Bioorg Med Chem Lett ; 27(23): 5291-5295, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29074258

RESUMEN

An efficient and practical strategy for the synthesis of unknown azetidine iminosugars (2S,3R,4S)-2-((R)-1,2-dihydroxyethyl)-3-hydroxy-4-(hydroxymethyl)azetidine 2, (2S,3r,4R)-3-hydroxy-2,4-bis(hydroxymethyl)azetidine 3 and (2S,3R,4S)-3-hydroxy-4-(hydroxymethyl)-N-methylazetidine-2-carboxylic acid 4, starting from the d-glucose has been reported. The methodology involves preparation of the 3-amino-N-benzyloxycarbonyl-3-deoxy-6-O-tert-butyldimethylsillyl-1,2-O-isopropylidene-α-d-glucofuranose 9, which was converted to the C-5-OMs derivative 11. Intramolecular nucleophilic displacement of the C-5-OMs group with in situ generated 3-amino functionality provided the required key azetidine ring skeletons 10 with additional hydroxymethyl group. Removal of 1,2-acetonide protection, followed by reduction and hydrogenolysis afforded azetidine iminosugar 2. Alternatively, removal of 1,2-acetonide group and chopping of C1-anomeric carbon gave C2-aldehyde that on reduction or oxidation followed by hydrogenolysis gave 2,4-bis(hydroxymethyl) azetidine iminosugars 3 and N-methylazetidine-2-carboxylic acid 4 respectively. The glycosidase inhibitory activity of 2-4 iminosugars was screened against various glycosidase enzymes and compared with a standard miglitol. Amongst synthesized targets, the compound 2 was found to be more potent amyloglucosidase inhibitor than miglitol. These results were supported by molecular docking studies.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Iminoazúcares/farmacología , Simulación del Acoplamiento Molecular , Aspergillus niger/enzimología , Canavalia/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/enzimología , Glicósido Hidrolasas/metabolismo , Hidroxilación , Iminoazúcares/síntesis química , Iminoazúcares/química , Estructura Molecular , Relación Estructura-Actividad , alfa-Galactosidasa/antagonistas & inhibidores , alfa-Galactosidasa/metabolismo , alfa-Manosidasa/antagonistas & inhibidores , alfa-Manosidasa/metabolismo
6.
J Nanosci Nanotechnol ; 15(6): 4039-45, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26369010

RESUMEN

Fine combination of natural botanical extracts to evaluate and maximize their medicinal efficacy has been studied for long. However, their limited shelf-life, complicated extraction protocols, and difficult compositional analysis have always been a problem. It is due to this that such materials take time to convert them into a proper pharmaceutical technology or product. In this context, we report on synthesis of self-assembled template of one of the most popular natural product, aloevera. This forms a fine porous membrane like structure, in which a natural drug, curcumin has been immobilized/trapped. The so-made curcumin-loaded-aloevera (CLA) structures have been carefully evaluated using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), atomic force microscopy (AFM), UV-vis spectroscopy and fluorescence microscopy. While FTIR shows that there is no chemical interaction between aloevera and curcumin, the pores are finely occupied by curcumin molecules. Fine microscopy structures reveal their distribution and fluorescence microscopy confirm the presence of curcumin within the pores. TGA shows 15% loading of the curcumin in the template and UV-visible spectroscopy data shows independent peaks of both, aloevera (196 nm and 256 nm) and curcumin (423 nm), respectively. When subjected to antioxidant studies, using DPPH assays, CLAs show a synergistically superior DPPH radical scavenging activity as compared to only curcumin and only aloevera extract. Same is true for hydroxyl and NO2 radicals. Trans-membrane release study reveals that there is no significant difference in the amount of curcumin release from CLAs till initial 30 min, however, it increases steadily thereafter. CLA is found to facilitate efficient release of curcumin in 5 h, which is higher as compared to the curcumin alone.


Asunto(s)
Aloe/química , Antioxidantes/química , Curcumina/química , Nanopartículas/química , Extractos Vegetales/química , Antioxidantes/metabolismo , Antioxidantes/farmacocinética , Portadores de Fármacos/química , Membranas Artificiales , Óxido Nítrico/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacocinética , Superóxidos/metabolismo
7.
J Nanosci Nanotechnol ; 15(6): 4046-51, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26369011

RESUMEN

With the advances in nanoscience and nanotechnology the interest of researchers has expanded to interdisciplinary domain like bio-medical applications. Among such domains, one of the most important areas explored meticulously is the development of promising solutions in diabetes therapeutics. The disease associated with metabolic disorder, is one of the major challenges, due to its ever-increasing number of patients. The adverse effects of the synthetic enzymes like α-amylase and α-glucosidase inhibitors have invited many scientists to develop promising contender with minimal side-effects. On the other hand, Zinc has strong role in insulin synthesis, storage and secretion and thus its deficiency can be related to diabetes. In this context we have explored natural extract of Red Sandalwood (RSW) as a potent anti-diabetic agent, in conjugation with ZnO nanoparticles. ZnO nanoparticles have been synthesized via soft chemistry routes and duly characterized for their phase formation with the help of X-ray diffraction technique and Field-Emission Scanning Electron Microscopy. These monodispersed nanoparticles, -20 nm in size, were further conjugated to RSW extract. The conjugation chemistry was studied via Fourier transform infrared spectroscopy, UV-visible spectroscopy. Extract loading percentage was found from thermo-gravimetric analysis. 65% of the RSW extract was found conjugated to the ZnO nanoparticles. The anti-diabetic activity was assessed with the help of like α-amylase and α-glucosidase inhibition assay with murine pancreatic and small intestinal extracts. It was observed that the conjugated ZnO-RSW nanoparticles showed excellent activity against the crude murine pancreatic glucosidase as compared to the individual ZnO nanoparticles and the RSW extract. The ZnO-RSW conjugate showed 61.93% of inhibition while the bare ZnO nanoparticles and RSW showed 21.48% and 5.90% respectively.


Asunto(s)
Hipoglucemiantes/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Santalum/química , Óxido de Zinc/química , Animales , Glucosidasas/antagonistas & inhibidores , Glucosidasas/efectos de los fármacos , Glucosidasas/metabolismo , Hipoglucemiantes/farmacología , Masculino , Ratones , Extractos Vegetales/farmacología , Porcinos , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/efectos de los fármacos , alfa-Amilasas/metabolismo
8.
J Nanosci Nanotechnol ; 15(12): 9464-72, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26682367

RESUMEN

Iron oxide nanoparticles (IONPs) have gained immense importance recently as drug nanocarriers due to easy multifunctionalization, simultaneous targeting, imaging and cancer hyperthermia. Herein, we report a novel nanomedicine comprising of IONPs core functionalized with a potent anticancer bioactive principle, diosgenin from medicinal plant Dioscorea bulbifera via citric acid linker molecule. IONPs were synthesized by reverse co-precipitation and characterized using field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and dynamic light scattering (DLS). Diosgenin functionalization was confirmed using fourier transform infrared spectroscopy (FTIR) and biochemical methods. Synthesized IONPs, citrate linked IONPs (IONPs-CA), diosgenin functionalized IONPs (IONPs-D) along with free citric acid and diosgenin were checked for anticancer activity against MCF7 breast cancer cells by MTT assay, wound migration assay, confocal microscopy and protein expression by western blotting. Size of IONPs, IONPs-CA and IONPs-D gradually increased ranging from 12 to 21 nm as confirmed by FESEM and HRTEM. Signature peaks of diosgenin at 2914, 1166 and 1444 cm-1 IONPs-D, revealed in FTIR indicated the presence of functionalized diosgenin. IONPs-D exhibited 51.08 ± 0.37% antiproliferative activity against MCF7 cells, which was found to be superior to free citric acid (17.71 ± 0.58%) and diosgenin (33.31 ± 0.37%). Treatment with IONPs-D exhibited reduced wound migration upto 40.83 ± 2.91% compared to bare IONPs (89.03 ± 2.58%) and IONPs-CA (50.35 ± 0.48%). IONPs-D and diosgenin exhibited apoptosis induction, confirmed by Alexa Fluor 488 annexin V/PI double-stained cells indicating extensive cell membrane damage coupled with PI influx leading to nuclear staining in treated cells. IONPs-D mediated selective PARP cleavage strongly rationalized it as superior apoptotic inducers. Based on these findings, IONPs-D can be considered as first diosgenin functionalized novel magnetic nanomedicine with antiproliferative, migration inhibiting and apoptosis inducing properties against breast cancer.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Diosgenina/farmacología , Portadores de Fármacos/química , Nanopartículas de Magnetita/química , Humanos , Células MCF-7
9.
J Org Chem ; 79(10): 4398-404, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24735108

RESUMEN

We report herein a newly developed domino reaction that facilitates the synthesis of new 1,5-dideoxy-1,5-iminoribitol iminosugar C-glycosides 7a-e and 8. The key intermediate in this approach is a six-membered cyclic sugar nitrone that is generated in situ and trapped by an alkene dipolarophile via a [2 + 3] cycloaddition reaction to give the corresponding isooxazolidines 10a-e in a "one-pot" protocol. The iminoribitol C-glycosides 7a-e and 8 were found to be modest ß-galactosidase (bGal) inhibitors. However, compounds 7c and 7e showed "pharmacological chaperone" activity for mutant lysosomal bGal activity and facilitated its recovery in GM1 gangliosidosis patient fibroblasts by 2-6-fold.


Asunto(s)
Alquenos/química , Fibroblastos/química , Gangliosidosis GM1/tratamiento farmacológico , Lisosomas/química , Chaperonas Moleculares/farmacología , Chaperonas Moleculares/uso terapéutico , Monosacáridos/síntesis química , Óxidos de Nitrógeno/química , beta-Galactosidasa/antagonistas & inhibidores , beta-Galactosidasa/química , Reacción de Cicloadición , Gangliosidosis GM1/enzimología , Gangliosidosis GM1/metabolismo , Glicósidos , Humanos , Lisosomas/metabolismo , Monosacáridos/química
10.
Bioorg Med Chem ; 22(21): 5776-82, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25305010

RESUMEN

An efficient and practical strategy for the synthesis of (3R,4s,5S)-4-(2-hydroxyethyl) piperidine-3,4,5-triol and its N-alkyl derivatives 8a-f, starting from the D-glucose, is reported. The chiral pool methodology involves preparation of the C-3-allyl-α-D-ribofuranodialdose 10, which was converted to the C-5-amino derivative 11 by reductive amination. The presence of C-3-allyl group gives an easy access to the requisite hydroxyethyl substituted compound 13. Intramolecular reductive aminocyclization of C-5 amino group with C-1 aldehyde provided the γ-hydroxyethyl substituted piperidine iminosugar 8a that was N-alkylated to get N-alkyl derivatives 8b-f. Iminosugars 8a-f were screened against glycosidase enzymes. Amongst synthetic N-alkylated iminosugars, 8b and 8c were found to be α-galactosidase inhibitors while 8d and 8e were selective and moderate α-mannosidase inhibitors. In addition, immunomodulatory activity of compounds 8a-f was examined. These results were substantiated by molecular docking studies using AUTODOCK 4.2 programme.


Asunto(s)
Inhibidores Enzimáticos/química , Iminoazúcares/química , Inmunosupresores/química , Piperidinas/química , alfa-Galactosidasa/antagonistas & inhibidores , Alquilación , Sitios de Unión , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Iminoazúcares/síntesis química , Iminoazúcares/farmacología , Inmunosupresores/síntesis química , Inmunosupresores/farmacología , Células Jurkat , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , alfa-Galactosidasa/metabolismo
11.
Front Chem ; 11: 1266556, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033473

RESUMEN

The rapid growth of various industries has led to a significant, alarming increase in recalcitrant pollutants in the environment. Hazardous dyes, heavy metals, pesticides, pharmaceutical products, and other associated polycyclic aromatic hydrocarbons (such as acenaphthene, fluorene, fluoranthene, phenanthrene, and pyrene) have posed a significant threat to the surroundings due to their refractory nature. Although activated carbon has been reported to be an adsorbent for removing contaminants from wastewater, it has its limitations. Hence, this review provides an elaborate account of converting agricultural waste into biochar with nanotextured surfaces that can serve as low-cost adsorbents with promising pollutant-removing properties. A detailed mechanism rationalized that this strategy involves the conversion of agrowaste to promising adsorbents that can be reduced, reused, and recycled. The potential of biowaste-derived biochar can be exploited for developing biofuel for renewable energy and also for improving soil fertility. This strategy can provide a solution to control greenhouse gas emissions by preventing the open burning of agricultural residues in fields. Furthermore, this serves a dual purpose for environmental remediation as well as effective management of agricultural waste rich in both organic and inorganic components that are generated during various agricultural operations. In this manner, this review provides recent advances in the use of agrowaste-generated biochar for cleaning the environment.

12.
Diagnostics (Basel) ; 13(5)2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36900089

RESUMEN

INTRODUCTION: There is increasing development of antibiotic resistance among the Enterococcus species. OBJECTIVES: This study was performed to determine prevalence and characterize the vancomycin-resistant and linezolid-resistant enterococcus isolates from a tertiary care center. Moreover, the antimicrobial susceptibility pattern of these isolates was also determined. MATERIALS AND METHODS: A prospective study was performed in Medical College, Kolkata, India, over a period of two years (from January 2018 to December 2019). After obtaining clearance from the Institutional Ethics Committee, Enterococcus isolates from various samples were included in the present investigation. In addition to the various conventional biochemical tests, the VITEK 2 Compact system was used to identify the Enterococcus species. The isolates were tested for antimicrobial susceptibility to different antibiotics using the Kirby-Bauer disk diffusion method and VITEK 2 Compact to determine the minimum inhibitory concentration (MIC). The Clinical and Laboratory Standards Institute (CLSI) 2017 guidelines were used to interpret susceptibility. Multiplex PCR was performed for genetic characterization of the vancomycin-resistant Enterococcus isolates and sequencing was performed for characterization of the linezolid-resistant Enterococcus isolates. RESULTS: During the period of two years, 371 isolates of Enterococcus spp. were obtained from 4934 clinical isolates showing a prevalence of 7.52%. Among these isolates, 239 (64.42%) were Enterococcus faecalis, 114 (30.72%) Enterococcus faecium, and others were Enterococcus durans, Enterococcus casseliflavus, Enterococcus gallinarum, and Enterococcus avium. Among these, 24 (6.47%) were VRE (Vancomycin-Resistant Enterococcus) of which 18 isolates were Van A type and six isolates of Enterococcus casseliflavus and Enterococcus gallinarum were resistant VanC type. There were two linezolid-resistant Enterococcus, and they were found to have the G2576T mutation. Among the 371 isolates, 252 (67.92%) were multi-drug resistant. CONCLUSION: This study found an increasing prevalence of vancomycin-resistant Enterococcus isolates. There is also an alarming prevalence of multidrug resistance among these isolates.

13.
Antibiotics (Basel) ; 12(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36830155

RESUMEN

In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in production, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with different nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry.

14.
Bioorg Med Chem Lett ; 22(23): 7011-4, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23102653

RESUMEN

A series of (2-phenyl-4H-benzopyrimodo[2,1-b][1,3]thiazol-4-yliden-4-yliden)acetonitrile derivatives have been prepared by ring transformation reaction of 4-(methylthio)-2-oxo-6-aryl-2H-pyrane-3-carbonitriles. The yield of ring transformation product is moderate to good. Furthermore the glycosidase inhibitory activities were tested by using α-amylase and α-glucosidase pancreatic, intestinal and liver enzymes, responsible for hyperglycemia in type II diabetes. The results revealed that all compounds exhibit significant glycosidase inhibitory activity.


Asunto(s)
Acetonitrilos/química , Acetonitrilos/farmacología , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes/síntesis química , Acetonitrilos/síntesis química , Acetonitrilos/metabolismo , Amilasas/antagonistas & inhibidores , Amilasas/metabolismo , Animales , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Hipoglucemiantes/química , Hipoglucemiantes/metabolismo , Intestinos/enzimología , Hígado/enzimología , Ratones , Páncreas/enzimología , Unión Proteica , Porcinos , alfa-Glucosidasas/metabolismo
15.
J Nanobiotechnology ; 10: 17, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22548753

RESUMEN

BACKGROUND: Novel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential. RESULTS: Synthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase. CONCLUSION: The elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.


Asunto(s)
Flores/química , Oro/química , Tecnología Química Verde/métodos , Nanopartículas del Metal/química , Extractos Vegetales/química , Thymelaeaceae/química , Catálisis , Cloruros/química , Compuestos de Oro/química , Luz , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Dispersión de Radiación , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo , Difracción de Rayos X
16.
Artículo en Inglés | MEDLINE | ID: mdl-21785651

RESUMEN

Diabetes is a metabolic disorder affecting about 220 million people worldwide. One of the most critical complications of diabetes is post-prandial hyper-glycemia (PPHG). Glucosidase inhibitor and α-amylase inhibitors are class of compounds that help in managing PPHG. Low-cost herbal treatment is recommended due to their lesser side effect for treatment of diabetes. Two plants with significant traditional therapeutic potential, namely, Gnidia glauca and Dioscorea bulbifera, were tested for their efficiency to inhibit α-amylase and α-glucosidase. Stem, leaf, and flower of G. glauca and bulb of D. bulbifera were sequentially extracted with petroleum ether, ethyl acetate, and methanol as well as separately with 70% ethanol. Petroleum ether extract of flower of G. glauca was found to inhibit α-amylase significantly (78.56%). Extracts were further tested against crude murine pancreatic, small intestinal, and liver glucosidase enzyme which revealed excellent inhibitory properties. α-glucosidase inhibition provided a strong in vitro evidence for confirmation of both G. glauca and D. bulbifera as excellent antidiabetic remedy. This is the first report of its kind that provides a strong biochemical basis for management of type II diabetes using G. glauca and D. bulbifera. These results provide intense rationale for further in vivo and clinical study.

17.
Sci Total Environ ; 841: 156457, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35662597

RESUMEN

Photosynthetic microbes like brown algae, red algae, green-algae and blue-green algae (cyanobacteria) are utilized extensively for various commercial and industrial purposes. However, in recent time, their application has shifted to nanotechnology. The synthesis of metal nanoparticles using algal resources is known as Phyconanotechnology. Due to various advantages of the photosynthetic microbes such as presence of bioactive molecules, scalability, high metal uptake and cultivability, these microbes form ideal sources for nanoparticle synthesis. The green synthesis of nanoparticles is a non-toxic and environment-friendly alternative compared to other hazardous chemical and physical routes of synthesis. Several species of algae are explored for the fabrication of metal and metal oxide nanoparticles. Various physical characterization techniques collectively contribute in defining the surface morphology of nanoparticles and the existing functional groups for bioreduction and stability. A wide range of nanostructured metals like gold, silver, copper, zinc, iron, platinum and palladium are fabricated using algae and cyanobacteria. Due to the unique properties of the phycogenic nanoparticles, biocompatibility and safety aspects, all of these metal nanoparticles have their applications in facets like infection control, diagnosis, drug delivery, biosensing and bioremediation. Herein, the uniqueness of the phycogenic nanoparticles along with their distinctive antibacterial, antifungal, antibiofilm, algaecidal, antiviral, anticancer, antioxidant, antidiabetic, dye degradation, metal removal and catalytic properties are featured. Lastly, this work highlights the various challenges and future perspectives for further exploration of the biogenic metal nanoparticles for development of nanomedicine and environmental remediation in the coming years.


Asunto(s)
Cianobacterias , Nanopartículas del Metal , Cobre/química , Cianobacterias/metabolismo , Oro , Nanopartículas del Metal/química , Nanotecnología/métodos , Óxidos , Plantas/metabolismo , Plata/metabolismo
18.
Sci Total Environ ; 838(Pt 3): 156212, 2022 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-35623529

RESUMEN

Nanotechnology-driven solutions have almost touched every aspect of life, such as therapeutics, cosmetics, agriculture, and the environment. Physical and chemical methods for the synthesis of nanoparticles involve hazardous reaction conditions and toxic reducing as well as stabilizing agents. Hence, environmentally benign green routes are preferred to synthesize nanoparticles with tunable size and shape. Bacteria, fungi, algae, and medicinal plants are employed to synthesize gold, silver, copper, zinc, and other nanoparticles. However, very little literature is available on exploring probiotic bacteria for the synthesis of nanoparticles. In view of the background, this review gives the most comprehensive report on the nanobiotechnological potential of probiotic bacteria like Bacillus licheniformis, Bifidobacterium animalis, Brevibacterium linens, Lactobacillus acidophilus, Lactobacillus casei, and others for the synthesis of gold (AuNPs), selenium (SeNPs), silver (AgNPs), platinum (PtNPs), tellurium nanoparticles (TeNPs), zinc oxide (ZnONPs), copper oxide (CuONPs), iron oxide (Fe3O4NPs), and titanium oxide nanoparticles (TiO2NPs). Both intracellular and extracellular synthesis are involved as potential routes for biofabrication of polydispersed nanoparticles that are spherical, rod, or hexagonal in shape. Capsular exopolysaccharide associated carbohydrates such as galactose, glucose, mannose, and rhamnose, cell membrane-associated diglycosyldiacylglycerol (DGDG), 1,2-di-O-acyl-3-O-[O-α-D-galactopyranosyl-(1 → 2)-α-d-glucopyranosyl]glycerol, triglycosyl diacylglycerol (TGDG), NADH-dependent enzymes, amino acids such as cysteine, tyrosine, and tryptophan, S-layer proteins (SLP), lacto-N-triose, and lactic acid play a significant role in synthesis and stabilization of the nanoparticles. The biogenic nanoparticles can be recovered by rational treatment with sodium dodecyl sulfate (SDS) and/or sodium hydroxide (NaOH). Eventually, diverse applications like antibacterial, antifungal, anticancer, antioxidant, and other associated activities of the bacteriogenic nanoparticles are also elaborated. Being more biocompatible and effective, probiotic-generated nanoparticles can be explored as novel nutraceuticals for their ability to ensure sustained release and bioavailability of the loaded bioactive ingredients for diagnosis, targeted drug delivery, and therapy.


Asunto(s)
Nanopartículas del Metal , Probióticos , Antibacterianos/farmacología , Bacterias/metabolismo , Cobre/metabolismo , Oro/química , Nanopartículas del Metal/química , Plata/química
19.
J Vis Exp ; (185)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35969088

RESUMEN

Developing novel materials for bone tissue engineering is one of the most important thrust areas of nanomedicine. Several nanocomposites have been fabricated with hydroxyapatite to facilitate cell adherence, proliferation, and osteogenesis. In this study, hybrid nanocomposites were successfully developed using graphene nanoribbons (GNRs) and nanoparticles of hydroxyapatite (nHAPs), that when employed in bioactive scaffolds may potentially improve bone tissue regeneration. These nanostructures can be biocompatible. Here, two approaches were used for preparing the novel materials. In one approach, a co-functionalization strategy was used where nHAP was synthesized and conjugated to GNRs simultaneously, resulting in nanohybrids of nHAP on GNR surfaces (denoted as nHAP/GNR). High-resolution transmission electron microscopy (HRTEM) confirmed that the nHAP/GNR composite is comprised of slender, thin structures of GNRs (maximum length of 1.8 µm) with discrete patches (150-250 nm) of needle-like nHAP (40-50 nm in length). In the other approach, commercially available nHAP was conjugated with GNRs forming GNR-coated nHAP (denoted as GNR/nHAP) (i.e., with an opposite orientation relative to the nHAP/GNR nanohybrid). The nanohybrid formed using the latter method exhibited nHAP nanospheres with a diameter ranging from 50 nm to 70 nm covered with a network of GNRs on the surface. Energy dispersive spectra, elemental mapping, and Fourier transform infrared (FTIR) spectra confirmed the successful integration of nHAP and GNRs in both nanohybrids. Thermogravimetric analysis (TGA) indicated that the loss at elevated heating temperatures due to the presence of GNRs was 0.5% and 0.98% for GNR/nHAP and nHAP/GNR, respectively. The nHAP-GNR nanohybrids with opposite orientations represent significant materials for use in bioactive scaffolds to potentially promote cellular functions for improving bone tissue engineering applications.


Asunto(s)
Grafito , Nanocompuestos , Nanotubos de Carbono , Huesos , Durapatita , Grafito/química , Nanocompuestos/química , Nanotubos de Carbono/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
20.
Front Chem ; 10: 1029056, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438875

RESUMEN

Hospital acquired infections caused due to ESKAPE pathogens pose a challenge for treatment due to their growing antimicrobial resistance. Curcuma aromatica (CA) is traditionally known for its antibacterial, wound healing and anti-inflammatory properties. The present study highlights the biogenic synthesis of silver nanoparticles (CAAgNPs) capped and stabilized by the compounds from CA rhizome extract, also further demonstrating their antibacterial, antibiofilm and synergistic effects against multidrug-resistant (MDR) pathogens. CAAgNPs were synthesized using aqueous rhizome extract of CA (5 mg/ml) and AgNO3 (0.8 mM) incubated at 60°C up to 144 h. UV-vis spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) revealed CAAgNPs with characteristic peak at 430 nm, 13 ± 5 nm size of spherical shape, showing presence of silver and crystalline nature, respectively. Dynamic light scattering (DLS) and zeta potential confirmed their monodispersed nature with average diameter of 77.88 ± 48.60 nm and stability. Fourier transform infrared spectroscopic (FTIR) analysis demonstrated the presence of phenolic -OH and carbonyl groups possibly involved in the reduction and stabilization of CAAgNPs. The minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and minimum biofilm inhibitory concentrations (MBICs) of CAAgNPs against Pseudomonas aeruginosa, NCIM 5029 and PAW1, and, Staphylococcus aureus, NCIM 5021 and S8 were in range from 8 to 128 µg/ml. Almost 50% disruption of pre-formed biofilms at concentrations 8-1,024 µg/ml was observed. Fluorescence microscopy and FESEM analysis confirmed cell death and disruption of pre-formed biofilms of P. aeruginosa PAW1 and S. aureus S8. Checkerboard assay demonstrated the synergistic effect of CAAgNPs (0.125-4 µg/ml) in combination with various antibiotics (0.063-1,024 µg/ml) against planktonic and biofilm forms of P. aeruginosa PAW1. The study confirms the antibacterial and antibiofilm activity of CAAgNPs alone and in combination with antibiotics against MDR pathogens, thus, reducing the dose as well as toxicity of both. CAAgNPs have the potential to be used in wound dressings and ointments, and to improve the performances of medical devices and surgical implants. In vivo toxicity of CAAgNPs however needs to be tested further using mice models.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda