Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Heliyon ; 10(15): e35699, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170545

RESUMEN

Vermicompost is an organic material that is abundant in humic acids and nutrients. It is obtained through the bio-oxidation and stabilization processes carried out by earthworms. It has been proven to bring several benefits to different soil properties, including bulk density, soil structure, and plant available water capacity (PAWC). This investigation was conducted to fill the knowledge gap in some critical factors related to vermicompost application, specifically the short-term influence of a single vermicompost application with increasing doses on soil wettability and physical quality of differently textured soils. Water repellency of vermicompost and soil/vermicompost mixtures was investigated at different moisture contents by the water drop penetration time test, whereas physical quality was assessed by 35 soil indicators related to bulk density, soil water retention curve, and pore size distribution function. Despite vermicompost showed from strong to severe hydrophobicity at moisture content lower than the field capacity, amended soils were at the most slightly water repellent thus indicating that, under field conditions, the hydrophobicity attributable to soil amendment with vermicompost could be considered negligible. Soil physical quality was effectively affected by vermicompost addiction with different outcomes depending on soil texture. Indicators linked to PAWC generally increased at increasing the vermicompost rate in the coarse soils whereas no significant effect was observed for intermediate and fine soils. For example, plant available water capacity of coarse-textured soils increased from an average initial value of 0.056 cm3 cm-3 to an optimal value of 0.15 cm3 cm-3 when a vermicompost addition dose of about one-third by volume (34 %) was applied. In the finest soil, drainable porosity significantly increased from an initial value of 0.09 cm3 cm-3 to 0.23 cm3 cm-3 when the maximum vermicompost dose (43 %) was applied thus indicating that amendment could be effective in enhancing water and air circulation.

2.
Sci Total Environ ; 658: 1186-1208, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30677982

RESUMEN

The impact of climate change could undermine the future grain production as a consequence of increased temperature and drought condition or improve the crop performance owing to the increased CO2 in the atmosphere. Wheat water demand and yield are strictly related to climate conditions of the area where the plants are cropped. In this study, we assessed the future trends of grain yield and water consumption in two European regions, Germany (Continental region) and Italy (Mediterranean region) in the light of the multiple sources of uncertainty related to climate and yield forecasts. Four crop models were set up under combinations of two European climate regions, five Global Circulation Models and two Representative CO2 Concentration Pathways, 486 ppm and 540 ppm in 2050. Yield and water use were assessed under rainfed and irrigated regimes, and the water footprint of green water and total water was estimated. Our results indicated that projected yields were comparable (Mediterranean area) or even improved (+9%; Continental area) in rainfed conditions in comparison to the current trend; and water supply enhanced crop performance (+22% in Germany and +19% in Italy, as mean). Crop water consumption (both green and blue) remained stable in future projections but the water footprint was 5% lower on average in Italy and 23% in Germany when compared to the baseline. Despite the uncertainty in future predictions related to the factors analysed, our result indicated that current wheat production and its water footprint could become more favourable under climate change.


Asunto(s)
Cambio Climático , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Agua/metabolismo , Sequías , Alemania , Italia , Modelos Biológicos , Incertidumbre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda