Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2318600121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588431

RESUMEN

Antibiotics are considered one of the most important contributions to clinical medicine in the last century. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulation models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend that the definition of heteroresistance should include a consideration of the rate of return to susceptibility.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Dinámica Poblacional , Pruebas de Sensibilidad Microbiana
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139182

RESUMEN

The identification of targets whose inactivation increases the activity of antibiotics helps to fight antibiotic resistance. Previous work showed that a transposon-insertion mutant in the gene PA14_27940 increases Pseudomonas aeruginosa susceptibility to aminoglycosides. Since polar effects may affect the phenotype, in the present work, we generated an in-frame PA14_27940 deletion mutant. A PA14_27940 deletion increased the susceptibility to aminoglycosides, tetracycline, tigecycline, erythromycin and fosfomycin. Excepting fosfomycin, the other antibiotics are inducers of the MexXY efflux pump. MexXY induction is required for P. aeruginosa resistance to these antibiotics, which is post-transcriptionally regulated by the anti-repressor ArmZ. Although mexXY is inducible by tobramycin in ΔPA14_27940, the induction level is lower than in the parental PA14 strain. Additionally, armZ is induced by tobramycin in PA14 and not in ΔPA14_27940, supporting that ΔPA14_27940 presents an ArmZ-mediated defect in mexXY induction. For its part, hypersusceptibility to fosfomycin may be due to a reduced expression of nagZ and agmK, which encode enzymes of the peptidoglycan recycling pathway. ΔPA14_27940 also presents defects in motility, an element with relevance in P. aeruginosa's virulence. Overall, our results support that PA14_27940 is a good target for the search of adjuvants that will increase the activity of antibiotics and reduce the virulence of P. aeruginosa.


Asunto(s)
Antibacterianos , Fosfomicina , Antibacterianos/farmacología , Antibacterianos/metabolismo , Pseudomonas aeruginosa , Fosfomicina/farmacología , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana , Aminoglicósidos/farmacología , Tobramicina/farmacología
3.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37569678

RESUMEN

Pseudomonas aeruginosa is a ubiquitous nosocomial opportunistic pathogen that harbors many virulence determinants. Part of P. aeruginosa success colonizing a variety of habitats resides in its metabolic robustness and plasticity, which are the basis of its capability of adaptation to different nutrient sources and ecological conditions, including the infected host. Given this situation, it is conceivable that P. aeruginosa virulence might be, at least in part, under metabolic control, in such a way that virulence determinants are produced just when needed. Indeed, it has been shown that the catabolite repression control protein Crc, which together with the RNA chaperon Hfq regulates the P. aeruginosa utilization of carbon sources at the post-transcriptional level, also regulates, directly or indirectly, virulence-related processes in P. aeruginosa. Among them, Crc regulates P. aeruginosa cytotoxicity, likely by modulating the activity of the Type III Secretion System (T3SS), which directly injects toxins into eukaryotic host cells. The present work shows that the lack of Crc produces a Type III Secretion-defective phenotype in P. aeruginosa. The observed impairment is a consequence of a reduced expression of the genes encoding the T3SS, together with an impaired secretion of the proteins involved. Our results support that the impaired T3SS activity of the crc defective mutant is, at least partly, a consequence of a defective protein export, probably due to a reduced proton motive force. This work provides new information about the complex regulation of the expression and the activity of the T3SS in P. aeruginosa. Our results highlight the need of a robust bacterial metabolism, which is defective in the ∆crc mutant, to elicit complex and energetically costly virulence strategies, as that provided by the T3SS.


Asunto(s)
Pseudomonas aeruginosa , Sistemas de Secreción Tipo III , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Pseudomonas aeruginosa/metabolismo , Factores de Virulencia/metabolismo , Fenómenos Fisiológicos Celulares , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163052

RESUMEN

The rise of multidrug-resistant Gram-negative pathogens and the lack of novel antibiotics to address this problem has led to the rescue of old antibiotics without a relevant use, such as fosfomycin. Stenotrophomonas maltophilia is a Gram-negative, non-fermenter opportunistic pathogen that presents a characteristic low susceptibility to several antibiotics of common use. Previous work has shown that while the so-far described mechanisms of fosfomycin resistance in most bacteria consist of the inactivation of the target or the transporters of this antibiotic, as well as the production of antibiotic-inactivating enzymes, these mechanisms are not selected in S. maltophilia fosfomycin-resistant mutants. In this microorganism, fosfomycin resistance is caused by the inactivation of enzymes belonging to its central carbon metabolism, hence linking metabolism with antibiotic resistance. Consequently, it is relevant to determine how different growing conditions, including urine and synthetic sputum medium that resemble infection, could impact the evolutionary pathways towards fosfomycin resistance in S. maltophilia. Our results show that S. maltophilia is able to acquire high-level fosfomycin resistance under all tested conditions. However, although some of the genetic changes leading to resistance are common, there are specific mutations that are selected under each of the tested conditions. These results indicate that the pathways of S. maltophilia evolution can vary depending on the infection point and provide information for understanding in more detail the routes of fosfomycin resistance evolution in S. maltophilia.


Asunto(s)
Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple , Fosfomicina/farmacología , Stenotrophomonas maltophilia/crecimiento & desarrollo , Adulto , Técnicas Bacteriológicas , Carbono/metabolismo , Evolución Molecular , Femenino , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mutación , Stenotrophomonas maltophilia/efectos de los fármacos , Stenotrophomonas maltophilia/genética
5.
Int J Mol Sci ; 23(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35886841

RESUMEN

Multidrug efflux pumps are critical elements in both intrinsic and acquired antibiotic resistance of bacterial populations. Consequently, most studies regarding these protein machineries focus on this specific phenotype. Nevertheless, different works show that efflux pumps participate in other aspects of bacterial physiology too. Herein, we study the Pseudomonas aeruginosa multidrug efflux pump MexJK. Previous studies, using model strains lacking MexAB-OprM and MexCD-OprJ efflux pumps, support that MexJK can extrude erythromycin, tetracycline, and triclosan. However, the results here reported indicate that this potential increased extrusion, in a mutant overexpressing mexJK, does not alter the antibiotics susceptibility in a wild-type genetic background where all intrinsic multidrug efflux pumps remain functional. Nevertheless, a clear impact on the quorum sensing (QS) response, mainly in the Pqs-dependent QS regulation network and in the expression of Pqs-regulated virulence factors, was observed linked to mexJK overexpression. The production of the siderophore pyoverdine strongly depended on the level of mexJK expression, suggesting that MexJK might participate in P. aeruginosa pyoverdine-dependent iron homeostasis. All in all, the results presented in the current article support that the functions of multidrug efflux pumps, as MexJK, go beyond antibiotic resistance and can modulate other relevant aspects of bacterial physiology.


Asunto(s)
Pseudomonas aeruginosa , Percepción de Quorum , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/genética
6.
Int J Mol Sci ; 23(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35008587

RESUMEN

Stenotrophomonas maltophilia is an opportunistic pathogen with an environmental origin, which presents a characteristically low susceptibility to antibiotics and is capable of acquiring increased levels of resistance to antimicrobials. Among these, fosfomycin resistance seems particularly intriguing; resistance to this antibiotic is generally due to the activity of fosfomycin-inactivating enzymes, or to defects in the expression or the activity of fosfomycin transporters. In contrast, we previously described that the cause of fosfomycin resistance in S. maltophilia was the inactivation of enzymes belonging to its central carbon metabolism. To go one step further, here we studied the effects of fosfomycin on the transcriptome of S. maltophilia compared to those of phosphoenolpyruvate-its structural homolog-and glyceraldehyde-3-phosphate-an intermediate metabolite of the mutated route in fosfomycin-resistant mutants. Our results show that transcriptomic changes present a large degree of overlap, including the activation of the cell-wall-stress stimulon. These results indicate that fosfomycin activity and resistance are interlinked with bacterial metabolism. Furthermore, we found that the studied compounds inhibit the expression of the smeYZ efflux pump, which confers intrinsic resistance to aminoglycosides. This is the first description of efflux pump inhibitors that can be used as antibiotic adjuvants to counteract antibiotic resistance in S. maltophilia.


Asunto(s)
Antibacterianos/farmacología , Fosfomicina/farmacología , Gliceraldehído 3-Fosfato/metabolismo , Fosfoenolpiruvato/metabolismo , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Transcriptoma/fisiología , Aminoglicósidos/metabolismo , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/fisiología , Stenotrophomonas maltophilia/efectos de los fármacos
7.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34360847

RESUMEN

The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Infecciones Oportunistas , Acinetobacter baumannii , Aeromonas , Animales , Burkholderia cepacia , Ecosistema , Humanos , Pseudomonas aeruginosa , Shewanella , Stenotrophomonas maltophilia
8.
Int J Antimicrob Agents ; 63(1): 107027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37926273

RESUMEN

The inducible inner membrane transporters, UhpT and GlpT are considered to be unique fosfomycin transporters. Glucose-6-phosphate, the substrate for UhpT, enhances fosfomycin activity. Previous work indicates that the fructose phosphotransferase system (PTS) might be involved in fosfomycin transport in the bacterial species, Stenotrophomonas maltophilia. Fosfomycin transport in Escherichia coli has been extensively studied and characterised. The current paper addresses the potential fosfomycin transport activity of the fructose PTS in E. coli. Notably, the deletion of both fructose-specific and general PTS proteins in E. coli increases fosfomycin resistance, which indicates that fructose PTS is involved in fosfomycin transport in E. coli. Further, although inactivation of UhpT, the canonical fosfomycin transporter, in E. coli increases fosfomycin resistance by 2-fold, inactivation of genes encoding the PTS increases it by up to 256-fold. Moreover, intracellular accumulation declines in the absence of both transporters, being mutations in the PTS associated with a larger decline. The results presented in this paper re-open the study of fosfomycin transport and reveal the role of the PTS in the transport of this bactericidal antibiotic in E. coli.


Asunto(s)
Proteínas de Escherichia coli , Fosfomicina , Fosfomicina/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas Quinasas/genética , Fructosa/metabolismo
9.
Antibiotics (Basel) ; 13(4)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38667006

RESUMEN

Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infections in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia infections are limited since it exhibits resistance to a wide variety of antibiotics such as ß-lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing (WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as the evolutionary trajectories toward that resistance, were determined. Our results determine that genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin. We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance. Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe and effective use in clinical settings. Herein, we were able to prove once again the extraordinary ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to combat this resistance.

10.
bioRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38617265

RESUMEN

The rational design of the antibiotic treatment of bacterial infections employs these drugs to reach concentrations that exceed the minimum needed to prevent the replication of the target bacteria. However, within a treated patient, spatial and physiological heterogeneity promotes antibiotic gradients such that the concentration of antibiotics at specific sites is below the minimum needed to inhibit bacterial growth. Here, we investigate the effects of sub-inhibitory antibiotic concentrations on three parameters central to bacterial infection and the success of antibiotic treatment, using in vitro experiments with Staphylococcus aureus and mathematical-computer simulation models. Our results, using drugs of six different classes, demonstrate that exposure to sub-inhibitory antibiotic concentrations not only alters the dynamics of bacterial growth but also increases the mutation rate to antibiotic resistance and decreases the rate of production of persister cells thereby reducing the persistence level. Understanding this trade-off between mutation rates and persistence levels resulting from sub-inhibitory antibiotic exposure is crucial for optimizing, and mitigating the failure of, antibiotic therapy.

11.
Microbiol Spectr ; 11(6): e0235023, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37902380

RESUMEN

IIMPORTANCE: Hfq and Crc regulate P. aeruginosa carbon catabolic repression at the post-transcriptional level. In vitro work has shown that Hfq binds the target RNAs and Crc stabilizes the complex. A third element in the regulation is the small RNA CrcZ, which sequesters the Crc-Hfq complex under no catabolic repression conditions, allowing the translation of the target mRNAs. A ΔcrcZ mutant was generated and presented fitness defects and alterations in its virulence potential and antibiotic resistance. Eight pseudo-revertants that present different degrees of fitness compensation were selected. Notably, although Hfq is the RNA binding protein, most mutations occurred in Crc. This indicates that Crc is strictly needed for P. aeruginosa efficient carbon catabolic repression in vivo. The compensatory mutations restore in a different degree the alterations in antibiotic susceptibility and virulence of the ΔcrcZ mutant, supporting that Crc plays a fundamental role linking P. aeruginosa metabolic robustness, virulence, and antibiotic resistance.


Asunto(s)
Represión Catabólica , Infecciones por Pseudomonas , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Farmacorresistencia Microbiana/genética , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Infecciones por Pseudomonas/metabolismo , ARN Bacteriano/genética , Virulencia/genética
12.
Expert Opin Drug Discov ; 18(6): 671-686, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37199662

RESUMEN

INTRODUCTION: The resistance-nodulation-division (RND) family is the most important group of multidrug efflux pumps in Gram-negative bacteria. Their inhibition increases the susceptibility of these microorganisms to antibiotics. The study of the effect of efflux pumps' overexpression on bacterial physiology in antibiotic-resistant mutants allows for the identification of exploitable weaknesses associated with resistance acquisition. AREAS COVERED: The authors describe different RND multidrug efflux pumps' inhibition strategies and provide examples of inhibitors. This review also discusses inducers of the expression of efflux pumps, used in human therapy that can produce transient resistance to antibiotics in vivo. Since RND efflux pumps may have a role in bacterial virulence, the use of these systems as targets in the search of antivirulence compounds is also discussed. Finally, this review analyzes how the study of trade-offs associated with resistance acquisition mediated by efflux pumps' overexpression may guide strategies to tackle such resistance. EXPERT OPINION: Increasing the knowledge of the regulation, structure and function of efflux pumps provides information for the rational design of RND efflux pump inhibitors. These inhibitors would increase bacterial susceptibility to several antibiotics and, occasionally, will reduce bacterial virulence. Furthermore, the information on the effect that efflux pumps' overexpression has on bacterial physiology may serve to develop new anti-resistance strategies.


Asunto(s)
Bacterias Gramnegativas , Proteínas de Transporte de Membrana , Humanos , Descubrimiento de Drogas , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Proteínas Bacterianas/genética
13.
Microbiol Spectr ; 11(3): e0409122, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37130356

RESUMEN

The MIC of an antibiotic required to prevent replication is used both as a measure of the susceptibility/resistance of bacteria to that drug and as the single pharmacodynamic parameter for the rational design of antibiotic treatment regimes. MICs are experimentally estimated in vitro under conditions optimal for the action of the antibiotic. However, bacteria rarely grow in these optimal conditions. Using a mathematical model of the pharmacodynamics of antibiotics, we make predictions about the nutrient dependency of bacterial growth in the presence of antibiotics. We test these predictions with experiments in broth and a glucose-limited minimal media with Escherichia coli and eight different antibiotics. Our experiments question the sufficiency of using MICs and simple pharmacodynamic functions as measures of the pharmacodynamics of antibiotics under the nutritional conditions of infected tissues. To an extent that varies among drugs: (i) the estimated MICs obtained in rich media are greater than those estimated in minimal media; (ii) exposure to these drugs increases the time before logarithmic growth starts, their lag; and (iii) the stationary-phase density of E. coli populations declines with greater sub-MIC antibiotic concentrations. We postulate a mechanism to account for the relationship between sub-MICs of antibiotics and these growth parameters. This study is limited to a single bacterial strain and two types of culture media with different nutritive content. These limitations aside, the results of our study clearly question the use of MIC as the unique pharmacodynamic parameter to develop therapeutically oriented protocols. IMPORTANCE For studies of antibiotics and how they work, the most-often used measurement of drug efficacy is the MIC. The MIC is the concentration of an antibiotic needed to inhibit bacterial growth. This parameter is critical to the design and implementation of antibiotic therapy. We provide evidence that the use of MIC as the sole measurement for antibiotic efficacy ignores important aspects of bacterial growth dynamics. Before now, there has not been a nexus between bacteria, the conditions in which they grow, and the MIC. Most importantly, few studies have considered sub-MICs of antibiotics, despite their clinical importance. Here, we explore these concentrations in-depth, and we demonstrate MIC to be an incomplete measure of how an infection will interact with a specific antibiotic. Understanding the critiques of MIC is the first of many steps needed to improve infectious disease treatment.


Asunto(s)
Antibacterianos , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Pruebas de Sensibilidad Microbiana , Modelos Teóricos
14.
Nat Rev Microbiol ; 21(10): 671-685, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37208461

RESUMEN

Antibiotic resistance is currently one of the most important public health problems. The golden age of antibiotic discovery ended decades ago, and new approaches are urgently needed. Therefore, preserving the efficacy of the antibiotics currently in use and developing compounds and strategies that specifically target antibiotic-resistant pathogens is critical. The identification of robust trends of antibiotic resistance evolution and of its associated trade-offs, such as collateral sensitivity or fitness costs, is invaluable for the design of rational evolution-based, ecology-based treatment approaches. In this Review, we discuss these evolutionary trade-offs and how such knowledge can aid in informing combination or alternating antibiotic therapies against bacterial infections. In addition, we discuss how targeting bacterial metabolism can enhance drug activity and impair antibiotic resistance evolution. Finally, we explore how an improved understanding of the original physiological function of antibiotic resistance determinants, which have evolved to reach clinical resistance after a process of historical contingency, may help to tackle antibiotic resistance.


Asunto(s)
Infecciones Bacterianas , Humanos , Farmacorresistencia Microbiana/genética , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Bacterias/genética , Antibacterianos/farmacología , Biología , Farmacorresistencia Bacteriana
15.
bioRxiv ; 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37961139

RESUMEN

Traditionally, bacteriostatic antibiotics are agents able to arrest bacterial growth. Despite being unable to kill bacterial cells, when they are used clinically the outcome of these drugs is frequently as effective as when a bactericidal drug is used. We explore the dynamics of Escherichia coli after exposure to two ribosome-targeting bacteriostatic antibiotics, chloramphenicol and azithromycin, for thirty days. The results of our experiments provide evidence that bacteria exposed to these drugs replicate, evolve, and generate a sub-population of small colony variants (SCVs) which are resistant to multiple drugs. These SCVs contribute to the evolution of heteroresistance and rapidly revert to a susceptible state once the antibiotic is removed. Stated another way, exposure to bacteriostatic drugs selects for the evolution of heteroresistance in populations previously lacking this trait. More generally, our results question the definition of bacteriostasis as populations exposed to bacteriostatic drugs are replicating despite the lack of net growth.

16.
bioRxiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37790545

RESUMEN

Antibiotics are considered one of the most important contributions to clinical medicine in the last 100 years. Due to the use and overuse of these drugs, there have been increasing frequencies of infections with resistant pathogens. One form of resistance, heteroresistance, is particularly problematic; pathogens appear sensitive to a drug by common susceptibility tests. However, upon exposure to the antibiotic, resistance rapidly ascends, and treatment fails. To quantitatively explore the processes contributing to the emergence and ascent of resistance during treatment and the waning of resistance following cessation of treatment, we develop two distinct mathematical and computer-simulations models of heteroresistance. In our analysis of the properties of these models, we consider the factors that determine the response to antibiotic-mediated selection. In one model, heteroresistance is progressive, with each resistant state sequentially generating a higher resistance level. In the other model, heteroresistance is non-progressive, with a susceptible population directly generating populations with different resistance levels. The conditions where resistance will ascend in the progressive model are narrower than those of the non-progressive model. The rates of reversion from the resistant to the sensitive states are critically dependent on the transition rates and the fitness cost of resistance. Our results demonstrate that the standard test used to identify heteroresistance is insufficient. The predictions of our models are consistent with empirical results. Our results demand a reevaluation of the definition and criteria employed to identify heteroresistance. We recommend the definition of heteroresistance should include a consideration of the rate of return to susceptibility.

17.
Front Microbiol ; 13: 863635, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620111

RESUMEN

It is generally accepted that fosfomycin activity is higher in the presence of glucose-6-phosphate, since its inducible transporter UhpT is one of the gates for fosfomycin entry. Accordingly, fosfomycin susceptibility tests are performed in the presence of this sugar; however, since Stenotrophomonas maltophilia lacks UhpT, it is doubtful that glucose-6-phosphate might be a fosfomycin adjuvant in this microorganism. The aim of the work was to determine whether glucose-6-phosphate or other metabolites may alter the activity of fosfomycin against S. maltophilia. To that goal, checkerboard assays were performed to analyze the synergy and antagonism of compounds, such as glucose-6-phosphate, fructose, phosphoenolpyruvate, and glyceraldehyde-3-phosphate, among others, with fosfomycin. Besides, minimal inhibitory concentrations of fosfomycin against a set of clinical S. maltophilia isolates presenting different levels of expression of the SmeDEF efflux pump were determined in the presence and absence of said compounds. Finally, intracellular fosfomycin concentrations were determined using a bioassay. Our results show that, opposite to what has been described for other bacteria, glucose-6-phosphate does not increase fosfomycin activity against S. maltophilia; it is a fosfomycin antagonist. However, other metabolites such as fructose, phosphoenolpyruvate and glyceraldehyde-3-phosphate, increase fosfomycin activity. Consistent with these results, glucose-6-phosphate decreases fosfomycin internalization (a feature against current ideas in the field), while the other three compounds increase the intracellular concentration of this antibiotic. These results support that current standard fosfomycin susceptibility tests made in the presence of glucose-6-phosphate do not account for the actual susceptibility to this antibiotic of some bacteria, such as S. maltophilia. Finally, the innocuous metabolites that increase S. maltophilia susceptibility to fosfomycin found in this work are potential adjuvants, which might be included in fosfomycin formulations used for treating infections by this resistant pathogen.

18.
Front Cell Infect Microbiol ; 12: 873989, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35646736

RESUMEN

Antibiotic resistance is a major human health problem. While health care facilities are main contributors to the emergence, evolution and spread of antibiotic resistance, other ecosystems are involved in such dissemination. Wastewater, farm animals and pets have been considered important contributors to the development of antibiotic resistance. Herein, we review the impact of wildlife in such problem. Current evidence supports that the presence of antibiotic resistance genes and/or antibiotic resistant bacteria in wild animals is a sign of anthropic pollution more than of selection of resistance. However, once antibiotic resistance is present in the wild, wildlife can contribute to its transmission across different ecosystems. Further, the finding that antibiotic resistance genes, currently causing problems at hospitals, might spread through horizontal gene transfer among the bacteria present in the microbiomes of ubiquitous animals as cockroaches, fleas or rats, supports the possibility that these organisms might be bioreactors for the horizontal transfer of antibiotic resistance genes among human pathogens. The contribution of wildlife in the spread of antibiotic resistance among different hosts and ecosystems occurs at two levels. Firstly, in the case of non-migrating animals, the transfer will take place locally; a One Health problem. Paradigmatic examples are the above mentioned animals that cohabit with humans and can be reservoirs and vehicles for antibiotic resistance dissemination. Secondly, migrating animals, such as gulls, fishes or turtles may participate in the dissemination of antibiotic resistance across different geographic areas, even between different continents, which constitutes a Global Health issue.


Asunto(s)
Animales Salvajes , Microbiota , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias , Farmacorresistencia Microbiana , Ratas
19.
Comput Struct Biotechnol J ; 19: 3110-3124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34141134

RESUMEN

Antibiotic resistance has been highlighted by international organizations, including World Health Organization, World Bank and United Nations, as one of the most relevant global health problems. Classical approaches to study this problem have focused in infected humans, mainly at hospitals. Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations, hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools. Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with several elements (from genes to the whole microbiome) involved. However, their study has been traditionally gene-centric, each element independently studied. The development of robust-economically affordable whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and proteomics, is changing this panorama. These technologies allow the description of a system, either a cell or a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are currently at the time of combining the information derived from -omic studies to have a more holistic view of the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of -omic information into computational models that serve to analyse the causes and the consequences of acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use for the global analysis of AR, aiming to identify the more useful targets for effective corrective interventions.

20.
Expert Rev Anti Infect Ther ; 18(4): 335-347, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32052662

RESUMEN

Introduction: Stenotrophomonas maltophilia is a prototype of bacteria intrinsically resistant to antibiotics. The reduced susceptibility of this microorganism to antimicrobials mainly relies on the presence in its chromosome of genes encoding efflux pumps and antibiotic inactivating enzymes. Consequently, the therapeutic options for treating S. maltophilia infections are limited.Areas covered: Known mechanisms of intrinsic, acquired and phenotypic resistance to antibiotics of S. maltophilia and the consequences of such resistance for treating S. maltophilia infections are discussed. Acquisition of some genes, mainly those involved in co-trimoxazole resistance, contributes to acquired resistance. Mutation, mainly in the regulators of chromosomally-encoded antibiotic resistance genes, is a major cause for S. maltophilia acquisition of resistance. The expression of some of these genes is triggered by specific signals or stressors, which can lead to transient phenotypic resistance.Expert opinion: Treatment of S. maltophilia infections is difficult because this organism presents low susceptibility to antibiotics. Besides, it can acquire resistance to antimicrobials currently in use. Particularly problematic is the selection of mutants overexpressing efflux pumps since they present a multidrug resistance phenotype. The use of novel antimicrobials alone or in combination, together with the development of efflux pumps' inhibitors may help in fighting S. maltophilia infections.


Asunto(s)
Antibacterianos/administración & dosificación , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Stenotrophomonas maltophilia/efectos de los fármacos , Animales , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Fenotipo , Stenotrophomonas maltophilia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda