Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Neurosci ; 43(8): 1375-1386, 2023 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-36650061

RESUMEN

Sensory cortices, even of primary regions, are not purely unisensory. Rather, cortical neurons in sensory cortex show various forms of multisensory interactions. While some multisensory interactions naturally co-occur, the combination of others will co-occur through experience. In real life, learning and experience will result in conjunction with seemingly disparate sensory information that ultimately becomes behaviorally relevant, impacting perception, cognition, and action. Here we describe a novel auditory discrimination task in mice, designed to manipulate the expectation of upcoming trials using olfactory cues. We show that, after learning, female mice display a transient period of several days during which they exploit odor-mediated expectations for making correct decisions. Using two-photon calcium imaging of single neurons in auditory cortex (ACx) during behavior, we found that the behavioral effects of odor-mediated expectations are accompanied by an odor-induced modulation of neuronal activity. Further, we find that these effects are manifested differentially, based on the response preference of individual cells. A significant portion of effects, but not all, are consistent with a predictive coding framework. Our data show that learning novel odor-sound associations evoke changes in ACx. We suggest that behaviorally relevant multisensory environments mediate contextual effects as early as ACx.SIGNIFICANCE STATEMENT Natural environments are composed of multisensory objects. It remains unclear whether and how animals learn the regularities of congruent multisensory associations and how these may impact behavior and neural activity. We tested how learned odor-sound associations affected single-neuron responses in auditory cortex. We introduce a novel auditory discrimination task for mice in which odors set different contexts of expectation to upcoming trials. We show that, although the task can be solved purely by sounds, odor-mediated expectation impacts performance. We further show that odors cause a modulation of neuronal activity in auditory cortex, which is correlated with behavior. These results suggest that learning prompts an interaction of odor and sound information as early as sensory cortex.


Asunto(s)
Corteza Auditiva , Odorantes , Ratones , Femenino , Animales , Corteza Auditiva/fisiología , Aprendizaje/fisiología , Olfato/fisiología , Percepción Auditiva/fisiología , Neuronas/fisiología , Estimulación Acústica
2.
PLoS Comput Biol ; 19(1): e1010861, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656876

RESUMEN

Surround suppression (SS) is a fundamental property of sensory processing throughout the brain. In the auditory system, the early processing stream encodes sounds using a one dimensional physical space-frequency. Previous studies in the auditory system have shown SS to manifest as bandwidth tuning around the preferred frequency. We asked whether bandwidth tuning can be found around frequencies away from the preferred frequency. We exploited the simplicity of spectral representation of sounds to study SS by manipulating both sound frequency and bandwidth. We recorded single unit spiking activity from the auditory cortex (ACx) of awake mice in response to an array of broadband stimuli with varying central frequencies and bandwidths. Our recordings revealed that a significant portion of neuronal response profiles had a preferred bandwidth that varied in a regular way with the sound's central frequency. To gain insight into the possible mechanism underlying these responses, we modelled neuronal activity using a variation of the "Mexican hat" function often used to model SS. The model accounted for response properties of single neurons with high accuracy. Our data and model show that these responses in ACx obey simple rules resulting from the presence of lateral inhibitory sidebands, mostly above the excitatory band of the neuron, that result in sensitivity to the location of top frequency edges, invariant to other spectral attributes. Our work offers a simple explanation for auditory edge detection and possibly other computations of spectral content in sounds.


Asunto(s)
Corteza Auditiva , Animales , Ratones , Corteza Auditiva/fisiología , Sonido , Neuronas/fisiología , Vigilia , Sensación , Estimulación Acústica/métodos , Percepción Auditiva/fisiología
3.
Sci Adv ; 10(33): eadp9816, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39141740

RESUMEN

Perceptual learning leads to improvement in behavioral performance, yet how the brain supports challenging perceptual demands is unknown. We used two photon imaging in the mouse primary auditory cortex during behavior in a Go-NoGo task designed to test perceptual difficulty. Using general linear model analysis, we found a subset of neurons that increased their responses during high perceptual demands. Single neurons increased their responses to both Go and NoGo sounds when mice were engaged in the more difficult perceptual discrimination. This increased responsiveness contributes to enhanced cortical network discriminability for the learned sounds. Under passive listening conditions, the same neurons responded weaker to the more similar sound pairs of the difficult task, and the training protocol by itself induced specific suppression to the learned sounds. Our findings identify how neuronal activity in auditory cortex is modulated during high perceptual demands, which is a fundamental feature associated with perceptual improvement.


Asunto(s)
Corteza Auditiva , Percepción Auditiva , Neuronas , Animales , Corteza Auditiva/fisiología , Ratones , Neuronas/fisiología , Percepción Auditiva/fisiología , Estimulación Acústica , Masculino , Aprendizaje/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda