Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Microb Cell Fact ; 23(1): 146, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783303

RESUMEN

BACKGROUND: Cellobiose dehydrogenase (CDH) is an extracellular fungal oxidoreductase with multiple functions in plant biomass degradation. Its primary function as an auxiliary enzyme of lytic polysaccharide monooxygenase (LPMO) facilitates the efficient depolymerization of cellulose, hemicelluloses and other carbohydrate-based polymers. The synergistic action of CDH and LPMO that supports biomass-degrading hydrolases holds significant promise to harness renewable resources for the production of biofuels, chemicals, and modified materials in an environmentally sustainable manner. While previous phylogenetic analyses have identified four distinct classes of CDHs, only class I and II have been biochemically characterized so far. RESULTS: Following a comprehensive database search aimed at identifying CDH sequences belonging to the so far uncharacterized class III for subsequent expression and biochemical characterization, we have curated an extensive compilation of putative CDH amino acid sequences. A sequence similarity network analysis was used to cluster them into the four distinct CDH classes. A total of 1237 sequences encoding putative class III CDHs were extracted from the network and used for phylogenetic analyses. The obtained phylogenetic tree was used to guide the selection of 11 cdhIII genes for recombinant expression in Komagataella phaffii. A small-scale expression screening procedure identified a promising cdhIII gene originating from the plant pathogen Fusarium solani (FsCDH), which was selected for expression optimization by signal peptide shuffling and subsequent production in a 5-L bioreactor. The purified FsCDH exhibits a UV-Vis spectrum and enzymatic activity similar to other characterized CDH classes. CONCLUSION: The successful production and functional characterization of FsCDH proved that class III CDHs are catalytical active enzymes resembling the key properties of class I and class II CDHs. A detailed biochemical characterization based on the established expression and purification strategy can provide new insights into the evolutionary process shaping CDHs and leading to their differentiation into the four distinct classes. The findings have the potential to broaden our understanding of the biocatalytic application of CDH and LPMO for the oxidative depolymerization of polysaccharides.


Asunto(s)
Deshidrogenasas de Carbohidratos , Filogenia , Proteínas Recombinantes , Deshidrogenasas de Carbohidratos/genética , Deshidrogenasas de Carbohidratos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/enzimología , Celulosa/metabolismo , Secuencia de Aminoácidos
2.
Mol Pharmacol ; 79(3): 479-87, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21097707

RESUMEN

Etoposide is a widely used anticancer drug successfully used for the treatment of many types of cancer in children and adults. Its use, however, is associated with an increased risk of development of secondary acute myelogenous leukemia involving the mixed-lineage leukemia (MLL) gene (11q23) translocations. Previous studies demonstrated that the phenoxyl radical of etoposide can be produced by action of myeloperoxidase (MPO), an enzyme found in developing myeloid progenitor cells, the likely origin for myeloid leukemias. We hypothesized, therefore, that one-electron oxidation of etoposide by MPO to its phenoxyl radical is important for converting this anticancer drug to genotoxic and carcinogenic species in human CD34(+) myeloid progenitor cells. In the present study, using electron paramagnetic resonance spectroscopy, we provide conclusive evidence for MPO-dependent formation of etoposide phenoxyl radicals in growth factor-mobilized CD34(+) cells isolated from human umbilical cord blood and demonstrate that MPO-induced oxidation of etoposide is amplified in the presence of phenol. Formation of etoposide radicals resulted in the oxidation of endogenous thiols, thus providing evidence for etoposide-mediated MPO-catalyzed redox cycling that may play a role in enhanced etoposide genotoxicity. In separate studies, etoposide-induced DNA damage and MLL gene rearrangements were demonstrated to be dependent in part on MPO activity in CD34(+) cells. Together, our results are consistent with the idea that MPO-dependent oxidation of etoposide in human hematopoietic CD34(+) cells makes these cells especially prone to the induction of etoposide-related acute myeloid leukemia.


Asunto(s)
Antígenos CD34/metabolismo , Antineoplásicos Fitogénicos/metabolismo , Etopósido/metabolismo , Células Progenitoras Mieloides/metabolismo , Peroxidasa/metabolismo , Ensayo Cometa , Espectroscopía de Resonancia por Spin del Electrón , Citometría de Flujo , Reordenamiento Génico , Guayacol/metabolismo , Humanos , Immunoblotting , Oxidación-Reducción
3.
Cancer Chemother Pharmacol ; 57(2): 221-33, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16010589

RESUMEN

PURPOSE: Quantitative structure-activity studies were performed on a series of benzoquinone mustard (BM) bifunctional alkylating agents to determine whether DNA topoisomerase II (topo II) inhibition was responsible for cell growth inhibition. METHODS: Topo II inhibition was evaluated by decatenation and agarose gel electrophoresis assays. RESULTS: The BM compounds were shown to potently inhibit the decatenation activity of topo II. Though BM compounds promoted the formation of protein-DNA complexes in isolated nuclei and cells, this effect was undiminished when levels of topo II varied. The BM compounds had little activity in a topo II-mediated DNA cleavage assay, suggesting that they do not function as topo II poisons. Rather, BM-induced protein-DNA complex formation was likely due to the bifunctional alkylating reactivity of these compounds. Finally, the growth inhibitory properties of these compounds did not correlate with their ability to inhibit topo II, indicating that these compounds did not exert their cellular activity through inhibition of topo II. Some BM compounds reacted very quickly with glutathione and cysteine, likely initially through an electrophilic Michael addition. In the absence of cysteine, the growth inhibitory effects of BM were increased tenfold, indicating the modulatory effect of cysteine sulfhydryl adducts. EPR studies showed that a semiquinone-free radical was produced by some BM compounds. CONCLUSIONS: BM compounds likely exert their action through DNA cross-linking and/or by inducing oxidative stress. Although topo II is not a direct target of these agents, this enzyme may play a role in processing the consequences of direct DNA adduction and/or oxidative DNA damage.


Asunto(s)
Alquilantes/farmacología , Benzoquinonas/farmacología , Aductos de ADN , Inhibidores de Topoisomerasa II , Animales , Benzoquinonas/química , Células CHO , Proliferación Celular , Cricetinae , Daño del ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Interacciones Farmacológicas , Electroforesis en Gel de Agar , Leucemia/patología , Estrés Oxidativo , Relación Estructura-Actividad Cuantitativa , Relación Estructura-Actividad , Células Tumorales Cultivadas
4.
Chem Res Toxicol ; 19(7): 937-43, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16841962

RESUMEN

Etoposide is a widely used antineoplastic agent that has provided great success in the treatment of childhood leukemias and other malignancies. Unfortunately, its use is associated with the increased risk of development of secondary acute myelogenous leukemias involving translocations at the MLL gene in chromosome band 11q23. Previous studies showed that the phenoxyl radical of etoposide can be generated by myeloperoxidase (MPO), an enzyme prevalent in myeloid progenitor cells that can derive myelogenous leukemias. Disproportionation of this radical leads to formation of the redox active etoposide ortho-quinone metabolite. We hypothesized that etoposide ortho-quinone could therefore form in myeloid progenitor cells and might be a contributor to the development of treatment-related secondary leukemias. Etoposide ortho-quinone is an inherently unstable compound and readily reacts with glutathione in aqueous media without any requirement for catalytic assistance from glutathione S-transferase. We looked for the presence of its glutathione adduct as an indicator of etoposide ortho-quinone in cells. MPO-expressing human myeloid leukemia HL60 cells were treated with etoposide for 0.5 h in the presence and absence of the cosubstrate of MPO, hydrogen peroxide. Cell lysates and medium were analyzed by LC-ESI-ion trap-MS and MS/MS, which yielded clear evidence of the intracellular formation of the etoposide ortho-quinone-glutathione adduct. A stable isotope-labeled form of the GSH adduct was synthesized and employed as an isotope dilution internal standard in LC-ESI-quadrupole-MS analyses. The glutathione adduct level was dependent on the concentration of etoposide added to the cells. More importantly, the formation of the glutathione adduct was significantly suppressed by the pretreatment of HL60 cells with the heme synthesis inhibitor succinylacetone (p < 0.001), which resulted in a decreased level and activity of MPO. These results are consistent with the idea that MPO is responsible for the conversion of etoposide to its ortho-quinone in these cells.


Asunto(s)
Benzoquinonas/metabolismo , Aductos de ADN/metabolismo , Etopósido/metabolismo , Glutatión/metabolismo , Peroxidasa/metabolismo , Benzoquinonas/química , Catálisis , Cromatografía Liquida , Aductos de ADN/química , Etopósido/química , Glutatión/química , Células HL-60 , Humanos , Espectrometría de Masas
5.
Mol Pharmacol ; 67(3): 937-47, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15602006

RESUMEN

Cisplatin was shown to strongly inhibit the decatenation and relaxation activity of isolated human DNA topoisomerase IIalpha. This inhibition was not accompanied by stabilization of a covalent topoisomerase IIalpha-DNA intermediate. Pretreatment of kinetoplast plasmid DNA (kDNA) or pBR322 DNA with submicromolar concentrations of cisplatin quickly rendered these substrates incompetent in the topoisomerase IIalpha catalytic assay. Cisplatin nearly equally inhibited growth of a parental K562 and an etoposide-resistant K/VP.5 cell line that contained decreased topoisomerase IIalpha levels, a result consistent with isolated enzyme experiments demonstrating that cisplatin was not a topoisomerase IIalpha poison. Because cisplatin is known to react with protein sulfhydryl groups, the 13 cysteine groups in the topoisomerase IIalpha monomer were evaluated by mass spectrometry to determine which cysteines were free and disulfide-bonded to identify possible sites of cisplatin adduction. High-pressure liquid chromatography-matrix-assisted laser desorption ionization mass spectrometry showed that topoisomerase IIalpha contained at least five free cysteines (170, 216, 300, 392, and 405) and two disulfide-bonded cysteine pairs (427-455 and 997-1008). Cysteine 733 was also disulfide-bonded, but its partner cysteine could not be identified. Cisplatin antagonized the formation of a fluorescence adduct between topoisomerase IIalpha and the sulfhydryl-reactive maleimide reagent 10-(2,5-dihydro-2,5-dioxo-1H-pyrrol-1-yl)-9-methoxy-3-oxo-3H-naphtho[2,1-b]pyran-2-carboxylic acid methyl ester (ThioGlo-1). Dithiothreitol, which was shown by spectrophotometry to react rapidly with cisplatin (6-min half-time), diminished the capacity of cisplatin to interfere with ThioGlo-1 binding to topoisomerase IIalpha. The results of this study suggest that cisplatin may exert some of its cell growth inhibitory and antitumor activity by inhibition of topoisomerase IIalpha through reaction with critical enzyme sulfhydryl groups and/or by forming DNA adducts that render the DNA substrate refractory to topoisomerase IIalpha.


Asunto(s)
Cisplatino/farmacología , Cisteína , ADN-Topoisomerasas de Tipo II/metabolismo , Proteoma/metabolismo , Antígenos de Neoplasias , División Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN , Disulfuros/análisis , Ditiotreitol/farmacología , Humanos , Células K562 , Cinética , Plásmidos , Inhibidores de Topoisomerasa II
6.
Mol Pharmacol ; 66(4): 824-33, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15231869

RESUMEN

Cdc25A and Cdc25B dual-specificity phosphatases are key regulators of cell cycle transition and proliferation. They have oncogenic properties and are overexpressed in many human tumors. Because selective Cdc25 phosphatase inhibitors would be valuable biological tools and possible therapeutic agents, we have assayed a small molecule library for in vitro inhibition of Cdc25. We now report the identification of two new structurally distinct classes of Cdc25 inhibitors with cellular activity. The cyclopentaquinoline 3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinoline-4,8-dicarboxylic acid (5661118) and the naphthofurandione 3-benzoyl-naphtho[1,2-b]furan-4,5-dione (5169131) had in vitro IC50 values of 2.5 to 11 microM against recombinant Cdc25 and were less potent inhibitors of other phosphatases. Unlike 5661118, 5169131 caused reversible inhibition of Cdc25B and displayed competitive inhibitor kinetics. No growth inhibitory activity was seen with 5661118, whereas 10 to 30 microM 5169131 caused G1/S and G2/M arrest. We also found that 5169131 inhibited human PC-3 prostate and MDA-MB-435 breast cancer cell proliferation. Concentration-dependent Tyr15 hyperphosphorylation was seen on cyclin-dependent kinase with a 1-h 5169131 treatment, consistent with Cdc25 inhibition. Cells resistant to DNA toposiomerase II inhibitors were as sensitive to 5169131 as parental cells, indicating that this quinone compound does not inhibit topoisomerase II in vivo. Molecular modeling was used to predict a potential interaction site between the inhibitor and Cdc25B and to provide insights as to the molecular origins of the experimental observations. Based on its kinetic profile and cellular activity, we suggest that 5169131 could be an excellent tool for further studies on the cellular roles of Cdc25.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Inhibidores Enzimáticos/aislamiento & purificación , Furanos/aislamiento & purificación , Naftoquinonas/aislamiento & purificación , Fosfatasas cdc25/antagonistas & inhibidores , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Furanos/síntesis química , Humanos , Naftoquinonas/síntesis química , Especificidad por Sustrato , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda