Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-29409996

RESUMEN

Fatty acid (FA) composition of lipids plays a crucial role in the functioning of lipid-containing structures in organisms and may be affected by the temperature an organism experiences, as well as its diet. We compared FA composition among four bee genera: Andrena, Bombus, Megachile, and Osmia which differ in their thermal ecology and diet. Fatty acid methyl esters (FAME) were prepared by direct transesterification with KOH and analyzed using gas-liquid chromatography with a flame ionization detector. Sixteen total FAs ranging in chain length from eight to 22 carbon atoms were identified. Linear discriminant analysis separated the bees based on their FA composition. Andrena was characterized by relatively high concentrations of polyunsaturated FAs, Bombus by high monounsaturated FAs and Megachilids (Megachile and Osmia) by relatively high amounts of saturated FAs. These differences in FA composition may in part be explained by variation in the diets of these bees. Because tongue (proboscis) length may be used as a proxy for the types of flowers bees may visit for nectar and pollen, we compared FA composition among Bombus that differed in proboscis length (but have similar thermal ecology). A clear separation in FA composition within Bombus with varying proboscis lengths was found using linear discriminant analysis. Further, comparing the relationship between each genus by cluster analysis revealed aggregations by genus that were not completely separated, suggesting potential overlap in dietary acquisition of FAs.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Abejas/fisiología , Ecosistema , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Conducta Alimentaria , Temperatura , Animales , Abejas/metabolismo , Cromatografía de Gases , Análisis por Conglomerados
2.
J Therm Biol ; 59: 52-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27264888

RESUMEN

Organism critical thermal limits are often tightly linked to current geographic distribution and can therefore help predict future range shifts driven by changing environmental temperatures. Thermal tolerance of diverse organisms often varies predictably with latitude, with upper thermal limits changing little and lower thermal limits decreasing with latitude. Despite similarly steep gradients in environmental temperatures across altitude, few studies have investigated altitudinal variation in critical thermal limits. We estimated critical thermal minimum (CTmin), critical thermal maximum (CTmax) and recovery temperature (Trec) by tracking righting response of three bumble bee species during thermal ramps: Bombus huntii collected from 2180m asl, and Bombus bifarius and Bombus sylvicola collected from 3290m asl in Wyoming, USA. Overall, larger bees could tolerate more extreme temperatures, likely due to a thermal inertia driven lag between core body temperatures and air temperatures. Despite their smaller size, high altitude bumble bees tolerated colder air temperatures: they had ~1°C lower CTmin and recovered from cold exposure at ~3-4°C lower air temperatures. Conversely, low altitude bees tolerated ~5°C hotter air temperatures. These altitudinal differences in thermal tolerance parallel differences in average daily minimum (1.2°C) and maximum (7.5°C) temperatures between these sites. These results provide one of the few measurements of organism thermal tolerance across altitude and the first evidence for geographical differences in tolerance of temperature extremes in heterothermic bumble bees.


Asunto(s)
Aclimatación , Abejas/fisiología , Altitud , Animales , Frío , Femenino , Calor , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda