RESUMEN
Several energy-related strategies and scenarios have been suggested to address concerns about rising global temperatures. In addition to using renewable energy, the improvement in energy efficiency of conventional systems is also in focus. Policies are already in place in many countries, including India, to address the energy needs of rural and small-scale enterprises by gasifying locally available, diverse agricultural leftovers. Although rice husk and groundnut shell are two commonly used agricultural leftovers in the southern part of India, their appropriate blending must be studied to improve their conversion efficiency in co-gasification. Therefore, the primary objective of this research is to construct a statistical model utilizing response surface methodology (RSM) to analyze the thermochemical co-gasification of the aforementioned biomass materials. Since RSM can predict optimum performance with limited experimental data, this could contribute to the identification of the performance and operating parameters of an open-core gasifier. The model predicts that the mixture containing 20% rice husk and working at an ER of 0.25 and a reduction zone inlet temperature of 879.9 °C will be CO-23.53%, H2-13.97%, and CH4-3.56%. In addition, the lower heating value and gas yield can be as high as 6.17 MJ/Nm3 and 2.369 m3/kg, respectively. This outcome can contribute to the effective utilization of biomass for energy supply in rural areas. However, the economic parameters must be analyzed to implement the same in any region.
Asunto(s)
Oryza , Gases , Temperatura , Biomasa , IndiaRESUMEN
The growing presence of emerging pollutants (EPs) in aquatic environments, as well as their harmful impacts on the biosphere and humans, has become a global concern. Recent developments and advancements in pharmaceuticals, agricultural practices, industrial activities, and human personal care substances have paved the way for drastic changes in EP concentrations and impacts on the ecosystem. As a result, it is critical to mitigate EP's harmful effects before they jeopardize the ecological equilibrium of the overall ecosystem and the sustainable existence of life on Earth. This review comprehensively documented the types, origins, and remediation strategies of EPs, and underscored the significance of this study in the current context. We briefly stated the major classification of EPs based on their organic and inorganic nature. Furthermore, this review systematically evaluates the occurrence of EPs due to the fast-changing ecological scenarios and their impact on human health. Recent studies have critically discussed the emerging physical and chemical processes for EP removal, highlighting the limitations of conventional remediation technologies. We reviewed and presented the challenges associated with EP remediation and degradation using several methods, including physical and chemical methods, with the application of recent technologies. The EP types and various methods discussed in this review help the researchers understand the nature of present-day EPs and utilize an efficient method of choice for EP removal and management in the future for sustainable life and development activities on the planet.
Asunto(s)
Restauración y Remediación Ambiental , Restauración y Remediación Ambiental/métodos , Contaminantes Ambientales/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Humanos , Biodegradación AmbientalRESUMEN
Climate change is an important environmental issue that is causing global temperatures to rise. The primary environmental targets are to reduce carbon emissions and mitigate the impacts of climate change. The refrigeration system is a major emitter of greenhouse gases because it uses refrigerants with a high global warming potential. Due to its excellent thermophysical properties, the R134a is the most commonly used refrigerant in refrigeration systems; however, its high GWP will need to be disposed of earlier. To achieve global environmental objectives, conventional refrigerants need to be replaced with environmentally friendly and energy-efficient refrigerants. In the present work, a mathematical simulation has been carried out to check the performance of low-GWP refrigerant mixtures as environmentally friendly alternatives for R134a in a low-temperature system. In this study, a 190-L domestic refrigerator has been considered a low-temperature system. This simulation was performed using the MATLAB software, and the REFPROP database was used to obtain thermophysical properties of the refrigerants. The results showed that the COP of HFO mixtures decreased by 4-20% compared to R134a. The exergy efficiency of the R1234ze/R134a mixture improves by 4 to 16% as compared to the other mixtures and its performance is very similar to the R134a. Due to the environmentally friendly properties and flammability aspects, R1234ze/R134a (90/10) could be a good substitute for R134a in lower temperature applications and to satisfy the Montreal and Kyoto Protocol expectations.
Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Temperatura , Frío , Cambio ClimáticoRESUMEN
Anaerobic Digestion (AD) is one of the promising wastestoenergy (WtE) technologies that convert organic wastes to useful gaseous fuel (biogas). In this process methane is produced in the presence of methanogens (bacteria). The survival and activities of methanogens are based on several parameters such as pH, temperature, organic loading rate, types of biodigester. Moreover, these parameters influence the production of biogas in terms of yield and composition. Maintaining an appropriate temperaturefor AD is highly critical and energy intensive. This study reviews the various hybrid technologies assistedbio gas production schemes particularly from renewable energy sources. Also discuss the direct and indirect solar assisted bio-digester impacts and recommendation to improve its performance. In addition, the performance analysis Solar Photovoltaic (PV) and thermal collector assisted bio gas plants; besides their impact on the performance of anaerobic digesters. Since opportunities of solar energy are attractive, the effective utilization of the same is selected for the discussion. Besides, the various constraints that affect the yield and composition of biogas are also evaluated along with the current biogas technologies and the biodigesters. The environmental benefits, challenges and socio-economic factors are also discussed for the successful implementation of various technologies.