Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Virol ; 97(5): e0177022, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37129496

RESUMEN

Vimentin (VIM), an indispensable protein, is responsible for the formation of intermediate filament structures within cells and plays a crucial role in viral infections. However, the precise role of VIM in classical swine fever virus (CSFV) infection remains unclear. Herein, we systematically investigated the function of VIM in CSFV replication. We demonstrated that both knockdown and overexpression of VIM affected CSFV replication. Furthermore, we observed by confocal microscopy the rearrangement of cellular VIM into a cage-like structure during CSFV infection. Three-dimensional (3D) imaging indicated that the cage-like structures were localized in the endoplasmic reticulum (ER) and ringed around the double-stranded RNA (dsRNA), thereby suggesting that VIM was associated with the formation of the viral replication complex (VRC). Mechanistically, phosphorylation of VIM at serine 72 (Ser72), regulated by the RhoA/ROCK signaling pathway, induced VIM rearrangement upon CSFV infection. Confocal microscopy and coimmunoprecipitation assays revealed that VIM colocalized and interacted with CSFV NS5A. Structurally, it was determined that amino acids 96 to 407 of VIM and amino acids 251 to 416 of NS5A were the respective important domains for this interaction. Importantly, both VIM knockdown and disruption of VIM rearrangement inhibited the localization of NS5A in the ER, implying that VIM rearrangement recruited NS5A to the ER for VRC formation. Collectively, our results suggest that VIM recruits NS5A to form a stable VRC that is protected by the cage-like structure formed by VIM rearrangement, ultimately leading to enhanced virus replication. These findings highlight the critical role of VIM in the formation and stabilization of VRC, which provides alternative strategies for the development of antiviral drugs. IMPORTANCE Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly infectious disease that poses a significant threat to the global pig industry. Therefore, gaining insights into the virus and its interaction with host cells is crucial for developing effective antiviral measures and controlling the spread of CSF. Previous studies have shown that CSFV infection induces rearrangement of the endoplasmic reticulum, leading to the formation of small vesicular organelles containing nonstructural protein and double-stranded RNA of CSFV, as well as some host factors. These organelles then assemble into viral replication complexes (VRCs). In this study, we have discovered that VIM recruited CSFV NS5A to form a stable VRC that was protected by a cage-like structure formed by rearranged VIM. This enhanced viral replication. Our findings not only shed light on the molecular mechanism of CSFV replication but also offer new insights into the development of antiviral strategies for controlling CSFV.


Asunto(s)
Virus de la Fiebre Porcina Clásica , Peste Porcina Clásica , Porcinos , Animales , Virus de la Fiebre Porcina Clásica/fisiología , Vimentina/metabolismo , ARN Bicatenario , Filamentos Intermedios/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Antivirales , Aminoácidos/genética
2.
PLoS Pathog ; 18(2): e1010294, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35120190

RESUMEN

As the important molecular machinery for membrane protein sorting in eukaryotic cells, the endosomal sorting and transport complexes (ESCRT-0/I/II/III and VPS4) usually participate in various replication stages of enveloped viruses, such as endocytosis and budding. The main subunit of ESCRT-I, Tsg101, has been previously revealed to play a role in the entry and replication of classical swine fever virus (CSFV). However, the effect of the whole ESCRT machinery during CSFV infection has not yet been well defined. Here, we systematically determine the effects of subunits of ESCRT on entry, replication, and budding of CSFV by genetic analysis. We show that EAP20 (VPS25) (ESCRT-II), CHMP4B and CHMP7 (ESCRT-III) regulate CSFV entry and assist vesicles in transporting CSFV from Clathrin, early endosomes, late endosomes to lysosomes. Importantly, we first demonstrate that HRS (ESCRT-0), VPS28 (ESCRT-I), VPS25 (ESCRT-II) and adaptor protein ALIX play important roles in the formation of virus replication complexes (VRC) together with CHMP2B/4B/7 (ESCRT-III), and VPS4A. Further analyses reveal these subunits interact with CSFV nonstructural proteins (NS) and locate in the endoplasmic reticulum, but not Golgi, suggesting the role of ESCRT in regulating VRC assembly. In addition, we demonstrate that VPS4A is close to lipid droplets (LDs), indicating the importance of lipid metabolism in the formation of VRC and nucleic acid production. Altogether, we draw a new picture of cellular ESCRT machinery in CSFV entry and VRC formation, which could provide alternative strategies for preventing and controlling the diseases caused by CSFV or other Pestivirus.


Asunto(s)
Virus de la Fiebre Porcina Clásica/metabolismo , Peste Porcina Clásica/virología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo , Animales , Línea Celular , Virus de la Fiebre Porcina Clásica/genética , Clatrina/metabolismo , Retículo Endoplásmico/metabolismo , Interacciones Microbiota-Huesped , Porcinos , Vesículas Transportadoras , Internalización del Virus , Replicación Viral
3.
J Virol ; 95(17): e0078121, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132567

RESUMEN

Classical swine fever virus (CSFV), a member of the genus Pestivirus of the family Flaviviridae, relies on host machinery to complete its life cycle. Previous studies have shown a close connection between virus infection and fatty acid biosynthesis, mainly regulated by fatty acid synthase (FASN). However, the molecular action of how FASN participates in CSFV replication remains to be elucidated. In this study, two chemical inhibitors of the fatty acid synthesis pathway [5-(tetradecyloxy)-2-furoic acid (TOFA) and tetrahydro-4-methylene-2R-octyl-5-oxo-3S-furancarboxylic acid (C75)] significantly impaired the late stage of viral propagation, suggesting CSFV replication required fatty acid synthesis. We next found that CSFV infection stimulated the expression of FASN, whereas knockdown of FASN inhibited CSFV replication. Furthermore, confocal microscopy showed that FASN participated in the formation of replication complex (RC), which was associated with the endoplasmic reticulum (ER). Interestingly, CSFV NS4B interacted with FASN and promoted overexpression of FASN, which is regulated by functional Rab18. Moreover, we found that FASN regulated the formation of lipid droplets (LDs) upon CSFV infection, promoting virus proliferation. Taken together, our work provides mechanistic insight into the role of FASN in the viral life of CSFV, and it highlights the potential antiviral target for the development of therapeutics against pestiviruses. IMPORTANCE Classical swine fever, caused by classical swine fever virus (CSFV), is one of the notifiable diseases by the World Organization for Animal Health (OIE) and causes significant financial losses to the pig industry globally. CSFV, like other (+)-strand RNA viruses, requires lipid and sterol biosynthesis for efficient replication. However, the role of lipid metabolism in CSFV replication remains unknown. Here, we found that fatty acid synthase (FASN) was involved in viral propagation. Moreover, FASN is recruited to CSFV replication sites in the endoplasmic reticulum (ER) and interacts with NS4B to regulate CSFV replication that requires Rab18. Furthermore, we speculated that lipid droplet (LD) biosynthesis, indirectly regulated by FASN, ultimately promotes CSFV replication. Our results highlight a critical role for de novo fatty acid synthesis in CSFV infection, which might help control this devastating virus.


Asunto(s)
4-Butirolactona/análogos & derivados , Virus de la Fiebre Porcina Clásica/fisiología , Peste Porcina Clásica/virología , Ácido Graso Sintasas/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Proteínas de Unión al GTP rab/metabolismo , 4-Butirolactona/farmacología , Animales , Peste Porcina Clásica/enzimología , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Ácido Graso Sintasas/metabolismo , Interacciones Huésped-Patógeno , Porcinos , Proteínas no Estructurales Virales/genética , Proteínas de Unión al GTP rab/genética
4.
J Virol ; 95(6)2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33328308

RESUMEN

Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is a highly contagious disease of swine with high morbidity and mortality that negatively affects the pig industry worldwide, in particular in China. Soon after the endocytosis of CSFV, the virus makes full use of the components of host cells to complete its life cycle. The endocytosis sorting complex required for transport (ESCRT) system is a central molecular machine for membrane protein sorting and scission in eukaryotic cells that plays an essential role in many physiological metabolic processes, including invasion and egress of envelope viruses. However, the molecular mechanism that ESCRT uses to regulate the replication of CSFV is unknown. In this study, we demonstrated that the ESCRT-I complex Tsg101 protein participates in clathrin-mediated endocytosis of CSFV and is also involved in CSFV trafficking. Tsg101 assists the virus in entering the host cell through the late endosome (Rab7 and Rab9) and finally reaching the lysosome (Lamp-1). Interestingly, Tsg101 is also involved in the viral replication process by interacting with nonstructural proteins 4B and 5B of CSFV. Finally, confocal microscopy showed that the replication complex of Tsg101 and double-stranded RNA (dsRNA) or NS4B and NS5B protein was close to the endoplasmic reticulum (ER), not the Golgi, in the cytoplasm. Collectively, our finding highlights that Tsg101 regulates the process of CSFV entry and replication, indicating that the ESCRT plays an important role in the life cycle of CSFV. Thus, ESCRT molecules could serve as therapeutic targets to combat CSFV infection.IMPORTANCE CSF, caused by CSFV, is a World Organization for Animal Health (OIE) notifiable disease and causes significant financial losses to the pig industry globally. The ESCRT machinery plays an important regulatory role in several members of the genera Flavivirus and Hepacivirus within the family Flaviviridae, such as hepatitis C virus, Japanese encephalitis virus, and dengue virus. Previous reports have shown that assembling and budding of these viruses require ESCRT. However, the role of ESCRT in Pestivirus infection remains to be elucidated. We determined the molecular mechanisms of the regulation of CSFV infection by the major subunit Tsg101 of ESCRT-I. Interestingly, Tsg101 plays an essential regulatory role in both clathrin-mediated endocytosis and genome replication of CSFV. Overall, the results of this study provide further insights into the molecular function of ESCRT-I complex protein Tsg101 during CSFV infection, which may serve as a molecular target for pestivirus inhibitors.


Asunto(s)
Virus de la Fiebre Porcina Clásica/fisiología , Proteínas de Unión al ADN/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Factores de Transcripción/metabolismo , Internalización del Virus , Replicación Viral , Animales , Línea Celular , Peste Porcina Clásica/metabolismo , Peste Porcina Clásica/virología , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Endosomas/metabolismo , Endosomas/virología , Interacciones Huésped-Patógeno , Lisosomas/metabolismo , Lisosomas/virología , ARN Viral/metabolismo , Porcinos , Factores de Transcripción/genética , Proteínas no Estructurales Virales/metabolismo , Compartimentos de Replicación Viral/metabolismo
5.
J Virol ; 95(10)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33627389

RESUMEN

Cytoskeleton, as a ubiquitous structure in the cells, plays an important role in the process of virus entry, replication, and survival. However, the action mechanism of cytoskeleton in the invasion of Pestivirus into host cells remains unclear. In this study, we systematically dissected the key roles of the main cytoskeleton components, microfilaments and microtubules in the endocytosis of porcine Pestivirus, Classical swine fever virus (CSFV). We observed the dynamic changes of actin filaments in CSFV entry. Confocal microscopy showed that CSFV invasion induced the dissolution and aggregation of stress fibers, resulting in the formation of lamellipodia and filopodia. Chemical inhibitors and RNA interference were used to find that the dynamic changes of actin were caused by EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42-cofilin signaling pathway, which regulates the microfilaments to help CSFV entry. Furthermore, co-localization of the microfilaments with clathrin and Rab5 (early endosome), as well as microtubules with Rab7 (late endosome) and Lamp1 (lysosome) revealed that microfilaments were activated and rearranged to help CSFV trafficking to early endosome after endocytosis. Subsequently, recruitment of microtubules by CSFV also assisted membrane fusion of the virions from late endosome to lysosome with the help of a molecular motor, dynein. Unexpectedly, vimentin, which is an intermediate filament, had no effect on CSFV entry. Taken together, our findings comprehensively revealed the molecular mechanisms of cytoskeletal components that regulated CSFV endocytosis and facilitated further understanding of Pestivirus entry, which would be conducive to explore antiviral molecules to control classical swine fever.IMPORTANCEEndocytosis, an essential biological process mediating cellular internalization events, is often exploited by pathogens for their entry into target cells. Previously, we have reported different mechanisms of CSFV endocytosis into the porcine epithelial cells (PK-15) and macrophages (3D4/21); however, the details of microfilaments/microtubules mediated virus migration within the host cells remained to be elucidated. In this study, we found that CSFV infection induced rearrangement of actin filaments regulated by cofilin through EGFR-PI3K/MAPK-RhoA/Rac1/Cdc42 pathway. Furthermore, we found that CSFV particles were trafficked along actin filaments in early and late endosomes, and through microtubules in lysosomes after entry. Here, we provide for the first time a comprehensive description of the cytoskeleton that facilitates entry and intracellular transport of highly pathogenic swine virus. Results from this study will greatly contribute to the understanding of virus-induced early and complex changes in host cells that are important in CSFV pathogenesis.

6.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R397-R409, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35938687

RESUMEN

Insulin dysregulation (ID) is a determinant of equine metabolic syndrome. Among the sphingolipids, ceramides contribute to the development of ID; however, the cross talk between the liver and adipose tissue (AT) depots and the variation among AT depots in terms of ceramide metabolism are not well understood. We aimed to characterize the sphingolipidome of plasma, liver, and AT (nuchal, NUAT; subcutaneous, SCAT; omental, OMAT; retroperitoneal, RPAT) and their associations with insulin response to oral glucose testing (OGT) in normoinsulinemic and hyperinsulinemic horses. Plasma, liver, and AT samples were collected from 12 Icelandic horses upon euthanasia and analyzed by liquid chromatography-mass spectrometry. Eighty-four targeted compounds were effectively quantified. Comparing the AT depots, greater (false discovery rate, FDR < 0.05) ceramide, dihydroceramide, and sphingomyelin concentrations and lower glucosyl- and galactosyl-ceramides were found in RPAT and OMAT than in NUAT and SCAT. Hyperinsulinemic response to OGT was associated with sphingolipidome alterations primarily in the RPAT and OMAT, whereas the NUAT sphingolipidome did not show signs of ceramide accumulation, which was inconsistent with the previously proposed role of nuchal adiposity in ID. The plasma sphingolipidome was not significantly associated with the liver or AT sphingolipidomes, indicating that plasma profiles are determined by an interplay of various organs. Furthermore, hepatic sphingolipid profiles were not correlated with the profiles of AT depots. Finally, statistically valid partial least square regression models predicting insulin response were found in the plasma (Q2 = 0.58, R2 = 0.98), liver (Q2 = 0.64, R2 = 0.74), and RPAT (Q2 = 0.68, R2 = 0.79) sphingolipidome, but not in the other adipose tissues.


Asunto(s)
Tejido Adiposo , Insulina , Animales , Ceramidas , Glucosa , Caballos , Islandia , Hígado
7.
Antimicrob Agents Chemother ; 65(7): e0013521, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33903104

RESUMEN

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes a debilitating febrile illness characterized by persistent muscle and joint pain. The widespread distribution of transmission-competent vectors, Aedes species mosquitoes, indicates the potential risk of large-scale epidemics with high attack rates that can severely impact public health globally. Despite this, currently, there are no antivirals available for the treatment of CHIKV infections. Thus, we aimed to identify potential drug candidates by screening a chemical library using a cytopathic effect-based high-throughput screening assay. As a result, we identified radicicol, a heat shock protein 90 (Hsp90) inhibitor that effectively suppressed CHIKV replication by blocking the synthesis of both positive- and negative-strand viral RNA as well as expression of viral proteins. Interestingly, selection for viral drug-resistant variants and mutational studies revealed nonstructural protein 2 (nsP2) as a putative molecular target of radicicol. Moreover, coimmunoprecipitation and in silico modeling analyses determined that G641D mutation in the methyltransferase (MT)-like domain of nsP2 is essential for its interaction with cytoplasmic Hsp90ß chaperone. Our findings collectively support the potential application of radicicol as an anti-CHIKV agent. The detailed study of the underlying mechanism of action further contributes to our understanding of virus-host interactions for novel therapeutics against CHIKV infection.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Fiebre Chikungunya/tratamiento farmacológico , Virus Chikungunya/genética , Macrólidos , Mosquitos Vectores , Proteínas no Estructurales Virales/genética , Replicación Viral
8.
Nucleic Acids Res ; 46(4): 1635-1647, 2018 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-29373735

RESUMEN

Retinoic acid-inducible gene I (RIG-I) recognizes double-stranded viral RNAs (dsRNAs) containing two or three 5' phosphates. A few reports of 5'-PPP-independent RIG-I agonists have emerged, but little is known about the molecular principles underlying their recognition. We recently found that the bent duplex RNA from the influenza A panhandle promoter activates RIG-I even in the absence of a 5'-triphosphate moiety. Here, we report that non-canonical synthetic RNA oligonucleotides containing G-U wobble base pairs that form a bent helix can exert RIG-I-mediated antiviral and anti-tumor effects in a sequence- and site-dependent manner. We present synthetic RNAs that have been systematically modified to enhance their efficacy and we outline the basic principles for engineering RIG-I agonists applicable to immunotherapy.

9.
J Virol ; 92(24)2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30282713

RESUMEN

Screening of chemical libraries with 2,000 synthetic compounds identified salinomycin as a hit against influenza A and B viruses, with 50% effective concentrations ranging from 0.4 to 4.3 µM in cells. This compound is a carboxylic polyether ionophore that exchanges monovalent ions for protons across lipid bilayer membranes. Monitoring the time course of viral infection showed that salinomycin blocked nuclear migration of viral nuclear protein (NP), the most abundant component of the viral ribonucleoprotein (vRNP) complex. It caused cytoplasmic accumulation of NP, particularly within perinuclear endosomes, during virus entry. This was primarily associated with failure to acidify the endosomal-lysosomal compartments. Similar to the case with amantadine (AMT), proton channel activity of viral matrix protein 2 (M2) was blocked by salinomycin. Using purified retroviral Gag-based virus-like particles (VLPs) with M2, it was proved that salinomycin directly affects the kinetics of a proton influx into the particles but in a manner different from that of AMT. Notably, oral administration of salinomycin together with the neuraminidase inhibitor oseltamivir phosphate (OSV-P) led to enhanced antiviral effect over that with either compound used alone in influenza A virus-infected mouse models. These results provide a new paradigm for developing antivirals and their combination therapy that control both host and viral factors.IMPORTANCE Influenza virus is a main cause of viral respiratory infection in humans as well as animals, occasionally with high mortality. Circulation of influenza viruses resistant to the matrix protein 2 (M2) inhibitor, amantadine, is highly prevalent. Moreover, the frequency of detection of viruses resistant to the neuraminidase inhibitors, including oseltamivir phosphate (OSV-P) or zanamivir, is also increasing. These issues highlight the need for discovery of new antiviral agents with different mechanisms. Salinomycin as the monovalent cation-proton antiporter exhibited consistent inhibitory effects against influenza A and B viruses. It plays multifunctional roles by blocking endosomal acidification and by inactivating the proton transport function of M2, the key steps for influenza virus uncoating. Notably, salinomycin resulted in marked therapeutic effects in influenza virus-infected mice when combined with OSV-P, suggesting that its chemical derivatives could be developed as an adjuvant antiviral therapy to treat influenza infections resistant or less sensitive to existing drugs.


Asunto(s)
Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Oseltamivir/administración & dosificación , Piranos/administración & dosificación , Proteínas de la Matriz Viral/metabolismo , Administración Oral , Animales , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Proteínas de la Nucleocápside , Infecciones por Orthomyxoviridae/virología , Oseltamivir/farmacología , Transporte de Proteínas/efectos de los fármacos , Piranos/farmacología , Proteínas de Unión al ARN/metabolismo , Proteínas del Núcleo Viral/metabolismo , Internalización del Virus
10.
PLoS Genet ; 12(12): e1006467, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27930647

RESUMEN

Equine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of horses and other equid species. Following natural infection, 10-70% of the infected stallions can become persistently infected and continue to shed EAV in their semen for periods ranging from several months to life. Recently, we reported that some stallions possess a subpopulation(s) of CD3+ T lymphocytes that are susceptible to in vitro EAV infection and that this phenotypic trait is associated with long-term carrier status following exposure to the virus. In contrast, stallions not possessing the CD3+ T lymphocyte susceptible phenotype are at less risk of becoming long-term virus carriers. A genome wide association study (GWAS) using the Illumina Equine SNP50 chip revealed that the ability of EAV to infect CD3+ T lymphocytes and establish long-term carrier status in stallions correlated with a region within equine chromosome 11. Here we identified the gene and mutations responsible for these phenotypes. Specifically, the work implicated three allelic variants of the equine orthologue of CXCL16 (EqCXCL16) that differ by four non-synonymous nucleotide substitutions (XM_00154756; c.715 A → T, c.801 G → C, c.804 T → A/G, c.810 G → A) within exon 1. This resulted in four amino acid changes with EqCXCL16S (XP_001504806.1) having Phe, His, Ile and Lys as compared to EqCXL16R having Tyr, Asp, Phe, and Glu at 40, 49, 50, and 52, respectively. Two alleles (EqCXCL16Sa, EqCXCL16Sb) encoded identical protein products that correlated strongly with long-term EAV persistence in stallions (P<0.000001) and are required for in vitro CD3+ T lymphocyte susceptibility to EAV infection. The third (EqCXCL16R) was associated with in vitro CD3+ T lymphocyte resistance to EAV infection and a significantly lower probability for establishment of the long-term carrier state (viral persistence) in the male reproductive tract. EqCXCL16Sa and EqCXCL16Sb exert a dominant mode of inheritance. Most importantly, the protein isoform EqCXCL16S but not EqCXCL16R can function as an EAV cellular receptor. Although both molecules have equal chemoattractant potential, EqCXCL16S has significantly higher scavenger receptor and adhesion properties compared to EqCXCL16R.


Asunto(s)
Infecciones por Arterivirus/genética , Quimiocinas CXC/genética , Equartevirus/genética , Enfermedades de los Caballos/genética , Alelos , Secuencia de Aminoácidos/genética , Animales , Infecciones por Arterivirus/veterinaria , Infecciones por Arterivirus/virología , Complejo CD3/genética , Complejo CD3/inmunología , Equartevirus/patogenicidad , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Enfermedades de los Caballos/virología , Caballos/genética , Caballos/virología , Masculino , Filogenia , Semen/metabolismo , Linfocitos T/inmunología , Linfocitos T/patología
11.
J Virol ; 91(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28424285

RESUMEN

Equine arteritis virus (EAV) has a global impact on the equine industry as the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. A distinctive feature of EAV infection is that it establishes long-term persistent infection in 10 to 70% of infected stallions (carriers). In these stallions, EAV is detectable only in the reproductive tract, and viral persistence occurs despite the presence of high serum neutralizing antibody titers. Carrier stallions constitute the natural reservoir of the virus as they continuously shed EAV in their semen. Although the accessory sex glands have been implicated as the primary sites of EAV persistence, the viral host cell tropism and whether viral replication in carrier stallions occurs in the presence or absence of host inflammatory responses remain unknown. In this study, dual immunohistochemical and immunofluorescence techniques were employed to unequivocally demonstrate that the ampulla is the main EAV tissue reservoir rather than immunologically privileged tissues (i.e., testes). Furthermore, we demonstrate that EAV has specific tropism for stromal cells (fibrocytes and possibly tissue macrophages) and CD8+ T and CD21+ B lymphocytes but not glandular epithelium. Persistent EAV infection is associated with moderate, multifocal lymphoplasmacytic ampullitis comprising clusters of B (CD21+) lymphocytes and significant infiltration of T (CD3+, CD4+, CD8+, and CD25+) lymphocytes, tissue macrophages, and dendritic cells (Iba-1+ and CD83+), with a small number of tissue macrophages expressing CD163 and CD204 scavenger receptors. This study suggests that EAV employs complex immune evasion mechanisms that warrant further investigation.IMPORTANCE The major challenge for the worldwide control of EAV is that this virus has the distinctive ability to establish persistent infection in the stallion's reproductive tract as a mechanism to ensure its maintenance in equid populations. Therefore, the precise identification of tissue and cellular tropism of EAV is critical for understanding the molecular basis of viral persistence and for development of improved prophylactic or treatment strategies. This study significantly enhances our understanding of the EAV carrier state in stallions by unequivocally identifying the ampullae as the primary sites of viral persistence, combined with the fact that persistence involves continuous viral replication in fibrocytes (possibly including tissue macrophages) and T and B lymphocytes in the presence of detectable inflammatory responses, suggesting the involvement of complex viral mechanisms of immune evasion. Therefore, EAV persistence provides a powerful new natural animal model to study RNA virus persistence in the male reproductive tract.


Asunto(s)
Linfocitos B/virología , Linfocitos T CD8-positivos/virología , Epitelio/virología , Equartevirus/fisiología , Genitales/virología , Células del Estroma/virología , Tropismo Viral , Animales , Infecciones por Arterivirus/veterinaria , Infecciones por Arterivirus/virología , Técnica del Anticuerpo Fluorescente , Enfermedades de los Caballos/virología , Caballos , Inmunohistoquímica , Masculino
12.
Bioorg Med Chem Lett ; 28(14): 2533-2538, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29866517

RESUMEN

Picornaviruses are non-enveloped viruses that represent a large family of positive-sense single-stranded RNA viruses including a number of causative agents of many human and animal diseases such as coxsackievirus B3 (CVB3) and rhinoviruses (HRV). In this study, we performed a high-throughput screening of a compound library composed of ∼6000 small molecules in search of potential picornavirus 3C protease (3Cpro) inhibitors. As results, we identified quinone analogues that effectively inhibited both CVB3 3Cpro and HRV 3Cpro with IC50 values in low micromolar range. Together with predicted binding modes of these compounds to the active site of the viral protease, it is implied that structural features of these non-peptidic inhibitors may act as useful scaffold for further anti-picornavirus drug design and development.


Asunto(s)
Antivirales/farmacología , Benzoquinonas/farmacología , Inhibidores de Proteasas/farmacología , Rhinovirus/efectos de los fármacos , Proteínas Virales/antagonistas & inhibidores , Proteasas Virales 3C , Antivirales/síntesis química , Antivirales/química , Benzoquinonas/síntesis química , Benzoquinonas/química , Cisteína Endopeptidasas/metabolismo , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Inhibidores de Proteasas/síntesis química , Inhibidores de Proteasas/química , Rhinovirus/enzimología , Relación Estructura-Actividad , Proteínas Virales/metabolismo
13.
J Virol ; 90(7): 3366-84, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26764004

RESUMEN

UNLABELLED: Previous studies in our laboratory have identified equine CXCL16 (EqCXCL16) to be a candidate molecule and possible cell entry receptor for equine arteritis virus (EAV). In horses, the CXCL16 gene is located on equine chromosome 11 (ECA11) and encodes a glycosylated, type I transmembrane protein with 247 amino acids. Stable transfection of HEK-293T cells with plasmid DNA carrying EqCXCL16 (HEK-EqCXCL16 cells) increased the proportion of the cell population permissive to EAV infection from <3% to almost 100%. The increase in permissiveness was blocked either by transfection of HEK-EqCXCL16 cells with small interfering RNAs (siRNAs) directed against EqCXCL16 or by pretreatment with guinea pig polyclonal antibody against EqCXCL16 protein (Gp anti-EqCXCL16 pAb). Furthermore, using a virus overlay protein-binding assay (VOPBA) in combination with far-Western blotting, gradient-purified EAV particles were shown to bind directly to the EqCXCL16 protein in vitro. The binding of biotinylated virulent EAV strain Bucyrus at 4°C was significantly higher in HEK-EqCXCL16 cells than nontransfected HEK-293T cells. Finally, the results demonstrated that EAV preferentially infects subpopulations of horse CD14(+) monocytes expressing EqCXCL16 and that infection of these cells is significantly reduced by pretreatment with Gp anti-EqCXCL16 pAb. The collective data from this study provide confirmatory evidence that the transmembrane form of EqCXCL16 likely plays a major role in EAV host cell entry processes, possibly acting as a primary receptor molecule for this virus. IMPORTANCE: Outbreaks of EVA can be a source of significant economic loss for the equine industry from high rates of abortion in pregnant mares, death in young foals, establishment of the carrier state in stallions, and trade restrictions imposed by various countries. Similar to other arteriviruses, EAV primarily targets cells of the monocyte/macrophage lineage, which, when infected, are believed to play a critical role in EVA pathogenesis. To this point, however, the host-specified molecules involved in EAV binding and entry into monocytes/macrophages have not been identified. Identification of the cellular receptors for EAV may provide insights to design antivirals and better prophylactic reagents. In this study, we have demonstrated that EqCXCL16 acts as an EAV entry receptor in EAV-susceptible cells, equine monocytes. These findings represent a significant advance in our understanding of the fundamental mechanisms associated with the entry of EAV into susceptible cells.


Asunto(s)
Quimiocinas CXC/fisiología , Equartevirus/fisiología , Especificidad del Huésped/genética , Receptores Virales/genética , Internalización del Virus , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/inmunología , Infecciones por Arterivirus/virología , Secuencia de Bases , Línea Celular , Quimiocinas CXC/antagonistas & inhibidores , Quimiocinas CXC/genética , Cricetinae , Equartevirus/genética , Cobayas , Células HEK293 , Enfermedades de los Caballos/virología , Caballos , Humanos , Interferencia de ARN , ARN Interferente Pequeño/genética , Conejos , Receptores Virales/metabolismo , Análisis de Secuencia de ADN , Acoplamiento Viral
14.
J Clin Microbiol ; 54(6): 1528-1535, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27030492

RESUMEN

Dengue virus (DENV) infection is considered a major public health problem in developing tropical countries where the virus is endemic and continues to cause major disease outbreaks every year. Here, we describe the development of a novel, inexpensive, and user-friendly diagnostic assay based on a reverse transcription-insulated isothermal PCR (RT-iiPCR) method for the detection of all four serotypes of DENV in clinical samples. The diagnostic performance of the newly established pan-DENV RT-iiPCR assay targeting a conserved 3' untranslated region of the viral genome was evaluated. The limit of detection with a 95% confidence was estimated to be 10 copies of in vitro-transcribed (IVT) RNA. Sensitivity analysis using RNA prepared from 10-fold serial dilutions of tissue culture fluid containing DENVs suggested that the RT-iiPCR assay was comparable to the multiplex real-time quantitative RT-PCR (qRT-PCR) assay for DENV-1, -3, and -4 detection but 10-fold less sensitive for DENV-2 detection. Subsequently, plasma collected from patients suspected of dengue virus infection (n = 220) and individuals not suspected of dengue virus infection (n = 45) were tested by the RT-iiPCR and compared to original test results using a DENV NS1 antigen rapid test and the qRT-PCR. The diagnostic agreement of the pan-DENV RT-iiPCR, NS1 antigen rapid test, and qRT-PCR tests was 93.9%, 84.5%, and 97.4%, respectively, compared to the composite reference results. This new RT-iiPCR assay along with the portable POCKIT nucleic acid analyzer could provide a highly reliable, sensitive, and specific point-of-need diagnostic assay for the diagnosis of DENV in clinics and hospitals in developing countries.


Asunto(s)
Virus del Dengue/aislamiento & purificación , Dengue/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Sistemas de Atención de Punto , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Virus del Dengue/genética , Humanos , Sensibilidad y Especificidad
16.
Microbiol Resour Announc ; 13(6): e0116023, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38780263

RESUMEN

Whole-genome sequencing of a Coxsackievirus B3 strain isolated from the stool of a febrile patient with aseptic meningoencephalitis, South Korea, in 2002 was performed. This strain exhibits a high nucleotide sequence identity with various strains circulating in China from 2001 to 2019.

17.
J Virol ; 86(22): 12407-10, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22933293

RESUMEN

We investigated the correlation between in vitro susceptibility of CD3(+) T lymphocytes to equine arteritis virus (EAV) infection and establishment of persistent infection among 14 stallions following natural infections. The data showed that carrier stallions with a CD3(+) T lymphocyte susceptibility phenotype to in vitro EAV infection may be at higher risk of becoming carriers than those that lack this phenotype (P = 0.0002).


Asunto(s)
Infecciones por Arterivirus/virología , Complejo CD3/biosíntesis , Equartevirus/metabolismo , Enfermedades de los Caballos/virología , Linfocitos T/virología , Animales , Infecciones por Arterivirus/metabolismo , Infecciones por Arterivirus/transmisión , Portador Sano/veterinaria , Predisposición Genética a la Enfermedad , Haplotipos , Caballos , Técnicas In Vitro , Masculino , Microscopía Fluorescente/métodos , Fenotipo , Riesgo
18.
Int J Infect Dis ; 130: 101-107, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36623793

RESUMEN

OBJECTIVES: The annual incidence of Japanese encephalitis (JE) has increased markedly in South Korea since 2010. We hypothesized that this increase was associated with higher frequencies of JE virus in animals. METHODS: We analyzed 5201 serum samples collected from even-toed hoofed mammals (Artiodactyla species) across South Korea from 2008 to 2012 using a stratified two-stage probability approach. RESULTS: The highest annual incidence of human JE cases and deaths occurred in 2010. Cases increased from six (no deaths) in 2008-2009 to 26 cases (seven deaths) in 2010. The JE virus seroprevalence in deer and elk fawns increased from 2.4% in 2008 to 24.1% in 2009, and in wild boars, it increased from 19.3% to 55.0% in the same period, which preceded the surge of human cases. Furthermore, the seroprevalence in calves increased from 15.3% in 2008 to 35.8% in 2010, and that in lambs and goat kids, increased from 8.5% in 2009 to 26.2% in 2010, which coincided with the surge in humans. CONCLUSION: Our findings show that the increased incidence of human JE in South Korea was temporally associated with an increasing seroprevalence in the Artiodactyla species. Surveillance of sentinel animals may be useful to predict the emergence of JE in humans.


Asunto(s)
Ciervos , Virus de la Encefalitis Japonesa (Especie) , Encefalitis Japonesa , Humanos , Animales , Ovinos , Estudios Seroepidemiológicos , Encefalitis Japonesa/epidemiología , Encefalitis Japonesa/veterinaria , República de Corea/epidemiología , Cabras
19.
Front Vet Sci ; 10: 1018230, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37051514

RESUMEN

Introduction: Accurate quantitative analysis of equine insulin in blood samples is critical for assessing hyperinsulinemia in horses. Although there are various laboratory methods for evaluating equine serum insulin, different immunoassays show significant discrepancies between the determined insulin concentrations and are often not comparable. The aim of this study was to evaluate the Immulite® 1000 chemiluminescent immunoassay (CLIA) to establish independent laboratory and assay-specific cut values to provide an accurate diagnosis of hyperinsulinemia in horses. Thus, the analytical and clinical performance of Immulite® 1000 CLIA in terms of precision (intra- and inter-assay coefficient of variance, CV) and recovery upon dilution were evaluated and compared with radioimmunoassay (RIA), which has been previously validated for use in horses. Material and methods: Archived serum samples (n = 106) from six Quarter horse mares enrolled in the glucose phase of a Frequently Sampled Insulin and Glucose Test (FSIGT) study were used to measure blood insulin. Results: The Immulite® 1000 CLIA had good precision with acceptable intra- and inter-assay CVs, adequate recovery on dilution, and a strong correlation with the RIA (r = 0.974, P < 0.0001), with constant bias resulting in consistently lower values. Discussion: On this basis, the Immulite® 1000 Insulin Assay is valid for measuring equine serum insulin for diagnostic and monitoring purposes when cut values are appropriately adjusted.

20.
Pathogens ; 12(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36839495

RESUMEN

Actinobacillus equuli subsp. equuli is the etiological agent of sleepy foal disease, an acute form of fatal septicemia in newborn foals. A. equuli is commonly found in the mucous membranes of healthy horses' respiratory and alimentary tracts and rarely causes disease in adult horses. In this study, we report a case of a 22-year-old American Paint gelding presenting clinical signs associated with an atypical pattern of pleuropneumonia subjected to necropsy. The gross and histopathological examinations revealed a unilateral fibrinosuppurative and hemorrhagic pleuropneumonia with an infrequent parenchymal distribution and heavy isolation of A. equuli. The whole genome sequence analysis indicated that the isolate shared 95.9% homology with the only other complete genome of A. equuli subsp. equuli available in GenBank. Seven virulence-associated genes specific to the isolate were identified and categorized as iron acquisition proteins, lipopolysaccharides (LPS), and capsule polysaccharides. Moreover, four genes (glf, wbaP, glycosyltransferase family 2 protein, and apxIB) shared higher amino acid similarity with the invasive Actinobacillus spp. than the reference A. equuli subsp. equuli genome. Availability of the whole genome sequence will allow a better characterization of virulence determinants of A. equuli subsp. equuli, which remain largely elusive.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda