Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 30(5): e202303404, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37924226

RESUMEN

The paper presents the colloidal and thermal stability of the three-component hybrid materials containing halloysite, polysaccharides (alginic acid, cationic cellulose and hydroxyethyl cellulose) and Tritons. TX-100, TX-165 and TX-405 were used as non-ionic surfactants. Stability and other properties of the hybrid materials were tested by the following methods: UV-Vis, TGA (thermogravimetric analysis) and DSC (differential scanning calorimetry), CHN (elemental analysis), SEM-EDX (scanning electron microscopy with energy dispersive X-ray spectroscopy) and tensiometry. According to the results with the increasing polymer concentration the colloidal stability of the tested systems also increases. Moreover, the addition of the surfactants causes the increase of polysaccharide adsorption but the colloidal stability of the tested systems decreases due to large weights of formed aggregates. As follows from the thermal analysis, the comparison of the TG/DTG-DSC curves obtained for the investigated polymers confirms that their thermal decomposition courses have some common features. The obtained results have the application potential in the formation of the materials for the pollutants removal from water and sewages.

2.
Int J Mol Sci ; 23(6)2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35328470

RESUMEN

The influence of star-shaped (PAA-SS) and linear polyacrylic acid (PAA) with different molecular weights (high-PAA-HMW and low-PAA-LMW) on the structure of the adsorption layer, adsorption amount, electrokinetic and stabilizing properties of the PAA/CTAB/nanoclay suspensions was studied. The properties of the systems containing one of these polymers, the cationic surfactant-hexadecyltrimethylammonium bromide (CTAB) and the surface-modified nanoclay (N-SM) were analyzed using the following techniques: BET, CHN, FT-IR, ED-XRF, XRD, HRTEM, UV-Vis, tensiometry and zeta potential measurements. It was proved that PAA could be used as an effective stabilizer of N-SM. Moreover, the addition of CTAB caused a significant increase in the stability of the systems but decreased the adsorption of PAA on the N-SM surface and changed the structure of the adsorption layers. The largest stability was observed in the PAA-HMW/CTAB system. The PAA polymers and PAA/CTAB complexes adsorbed, especially on the clay surface, influenced the primary distribution of the layered sheets but kept the same basal d-spacing. The adsorption of PAA and the PAA/CTAB complexes took place mainly at the plate edges and on the contact space between the sheets. The obtained results will be used for the preparation of the PAA/CTAB/nanoclay composite for water purification.


Asunto(s)
Polímeros , Adsorción , Cetrimonio , Arcilla , Espectroscopía Infrarroja por Transformada de Fourier
3.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34830038

RESUMEN

The influence of the pseudoamphoteric zwitterionic surfactant cocamidopropylbetaine (CAPB) on the stabilizing flocculating properties of the aqueous suspensions of glauconite (GT) with cationic guar gum (CGG) at various pH values was investigated. The following techniques were used: turbidimetry, UV-VIS spectrophotometry, tensiometry, electrophoretic mobility measurements, SEM, CHN, XRD, and FT-IR. It was established that CGG is an effective glauconite flocculant. Moreover, the most probable mechanism that is responsible for flocculation is bridge flocculation resulting from polymer adsorption on the glauconite surface. The adsorption process is caused by electrostatic interactions between the negatively charged glauconite surface and the positively charged polymer. The amount of CGG adsorption increases with the increase of the pH, which was confirmed by the adsorption and zeta potential measurements. The addition of CAPB increases the amount of the polymer adsorption due to the formation of intermolecular polymer-surfactant complexes; however, it reduces flocculation effectiveness.


Asunto(s)
Betaína/análogos & derivados , Galactanos/química , Mananos/química , Minerales/química , Gomas de Plantas/química , Betaína/química , Floculación , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda