Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Conf Proc IEEE Eng Med Biol Soc ; 2006: 5511-4, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17946310

RESUMEN

Kernel Principal Component analysis is a nonlinear generalization of the popular linear multivariate analysis method. However, this method assumes that the observed data is independent, a disadvantage for many practical applications. In order to overcome this difficulty, the authors propose a combination of Kernel Principal Component analysis and hidden Markov models. The novelty of the proposed method consists mainly in the way in which a static dimensionality reduction technique has been combined with a classic mixture model in time, to enhance the capabilities of transformation, reduction and classification of voice disorder data. Experimental results show improvements in classification accuracies even with highly reduced representations of the two databases used.


Asunto(s)
Trastornos de la Voz/diagnóstico , Algoritmos , Inteligencia Artificial , Humanos , Interpretación de Imagen Asistida por Computador , Almacenamiento y Recuperación de la Información , Modelos Estadísticos , Análisis Multivariante , Reconocimiento de Normas Patrones Automatizadas , Análisis de Componente Principal , Programas Informáticos , Tiempo , Factores de Tiempo , Voz , Trastornos de la Voz/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda