Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Alzheimers Dement ; 20(9): 5912-5925, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39136296

RESUMEN

BACKGROUND: Education influences brain health and dementia. However, its impact across regions, specifically Latin America (LA) and the United States (US), is unknown. METHODS: A total of 1412 participants comprising controls, patients with Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD) from LA and the US were included. We studied the association of education with brain volume and functional connectivity while controlling for imaging quality and variability, age, sex, total intracranial volume (TIV), and recording type. RESULTS: Education influenced brain measures, explaining 24%-98% of the geographical differences. The educational disparities between LA and the US were associated with gray matter volume and connectivity variations, especially in LA and AD patients. Education emerged as a critical factor in classifying aging and dementia across regions. DISCUSSION: The results underscore the impact of education on brain structure and function in LA, highlighting the importance of incorporating educational factors into diagnosing, care, and prevention, and emphasizing the need for global diversity in research. HIGHLIGHTS: Lower education was linked to reduced brain volume and connectivity in healthy controls (HCs), Alzheimer's disease (AD), and frontotemporal lobar degeneration (FTLD). Latin American cohorts have lower educational levels compared to the those in the United States. Educational disparities majorly drive brain health differences between regions. Educational differences were significant in both conditions, but more in AD than FTLD. Education stands as a critical factor in classifying aging and dementia across regions.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Escolaridad , Imagen por Resonancia Magnética , Humanos , América Latina , Masculino , Femenino , Estados Unidos , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Anciano , Enfermedad de Alzheimer/patología , Persona de Mediana Edad , Degeneración Lobar Frontotemporal/patología , Demencia/patología , Demencia/epidemiología
2.
Res Sq ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38978575

RESUMEN

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of multimodal diversity (geographical, socioeconomic, sociodemographic, sex, neurodegeneration) on the brain age gap (BAG) is unknown. Here, we analyzed datasets from 5,306 participants across 15 countries (7 Latin American countries -LAC, 8 non-LAC). Based on higher-order interactions in brain signals, we developed a BAG deep learning architecture for functional magnetic resonance imaging (fMRI=2,953) and electroencephalography (EEG=2,353). The datasets comprised healthy controls, and individuals with mild cognitive impairment, Alzheimer's disease, and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (fMRI: MDE=5.60, RMSE=11.91; EEG: MDE=5.34, RMSE=9.82) compared to non-LAC, associated with frontoposterior networks. Structural socioeconomic inequality and other disparity-related factors (pollution, health disparities) were influential predictors of increased brain age gaps, especially in LAC (R2=0.37, F2=0.59, RMSE=6.9). A gradient of increasing BAG from controls to mild cognitive impairment to Alzheimer's disease was found. In LAC, we observed larger BAGs in females in control and Alzheimer's disease groups compared to respective males. Results were not explained by variations in signal quality, demographics, or acquisition methods. Findings provide a quantitative framework capturing the multimodal diversity of accelerated brain aging.

3.
Nat Med ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39187698

RESUMEN

Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (R² = 0.37, F² = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36583137

RESUMEN

Background: Global brain health initiatives call for improving methods for the diagnosis of Alzheimer's disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper-middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods: This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings: A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation: Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region. Funding: This work was supported by the Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat), funded by NIA/NIH (R01AG057234), Alzheimer's Association (SG-20-725707-ReDLat), Rainwater Foundation, Takeda (CW2680521), Global Brain Health Institute; as well as CONICET; FONCYT-PICT (2017-1818, 2017-1820); PIIECC, Facultad de Humanidades, Usach; Sistema General de Regalías de Colombia (BPIN2018000100059), Universidad del Valle (CI 5316); ANID/FONDECYT Regular (1210195, 1210176, 1210176); ANID/FONDAP (15150012); ANID/PIA/ANILLOS ACT210096; and Alzheimer's Association GBHI ALZ UK-22-865742.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda