Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Am Chem Soc ; 143(11): 4143-4147, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33719416

RESUMEN

New nanoporous materials have the ability to revolutionize adsorption and separation processes. In particular, materials with adaptive cavities have high selectivity and may display previously undiscovered phenomena, such as negative gas adsorption (NGA), in which gas is released from the framework upon an increase in pressure. Although the thermodynamic driving force behind this and many other counterintuitive adsorption phenomena have been thoroughly investigated in recent years, several experimental observations remain difficult to explain. This necessitates a comprehensive analysis of gas adsorption akin to the conformational free energy landscapes used to understand the function of proteins. We have constructed the complete thermodynamic landscape of methane adsorption on DUT-49. Traversing this complex landscape reproduces the experimentally observed structural transitions, temperature dependence, and the hysteresis between adsorption and desorption. The complete thermodynamic description presented here provides unparalleled insight into adsorption and provides a framework to understand other adsorbents that challenge our preconceptions.

2.
J Chem Theory Comput ; 20(12): 5225-5240, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38853522

RESUMEN

Nanoporous materials in the form of metal-organic frameworks such as zeolitic imidazolate framework-8 (ZIF-8) are promising membrane materials for the separation of hydrocarbon mixtures. To compute the adsorption isotherms in such adsorbents, grand canonical Monte Carlo simulations have proven to be very useful. The quality of these isotherms depends on the accuracy of adsorbate-adsorbent interactions, which are mostly described using force fields owing to their low computational cost. However, force field predictions of adsorption uptake often show discrepancies from experiments at low pressures, providing the need for methods that are more accurate. Hence, in this work, we propose and validate two novel methodologies for the ZIF-8/ethane and ethene systems; a benchmarking methodology to evaluate the performance of any given force field in describing adsorption in the low-pressure regime and a refinement procedure to rescale the parameters of a force field to better describe the host-guest interactions and provide for simulation isotherms with close agreement to experimental isotherms. Both methodologies were developed based on a reference Henry coefficient, computed with the PBE-MBD functional using the importance sampling technique. The force field rankings predicted by the benchmarking methodology involve the comparison of force field derived Henry coefficients with the reference Henry coefficients and ranking the force fields based on the disparities between these Henry coefficients. The ranking from this methodology matches the rankings made based on uptake disparities by comparing force field derived simulation isotherms to experimental isotherms in the low-pressure regime. The force field rescaling methodology was proven to refine even the worst performing force field in UFF/TraPPE. The uptake disparities of UFF/TraPPE improved from 197% and 194% to 11% and 21% for ethane and ethene, respectively. The proposed methodology is applicable to predict adsorption across nanoporous materials and allows for rescaled force fields to reach quantum accuracy without the need for experimental input.

3.
Nat Commun ; 15(1): 3898, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724490

RESUMEN

In 2021, Svante, in collaboration with BASF, reported successful scale up of CALF-20 production, a stable MOF with high capacity for post-combustion CO2 capture which exhibits remarkable stability towards water. CALF-20's success story in the MOF commercialisation space provides new thinking about appropriate structural and adsorptive metrics important for CO2 capture. Here, we combine atomistic-level simulations with experiments to study adsorptive properties of CALF-20 and shed light on its flexible crystal structure. We compare measured and predicted CO2 and water adsorption isotherms and explain the role of water-framework interactions and hydrogen bonding networks in CALF-20's hydrophobic behaviour. Furthermore, regular and enhanced sampling molecular dynamics simulations are performed with both density-functional theory (DFT) and machine learning potentials (MLPs) trained to DFT energies and forces. From these simulations, the effects of adsorption-induced flexibility in CALF-20 are uncovered. We envisage this work would encourage development of other MOF materials useful for CO2 capture applications in humid conditions.

4.
J Chem Theory Comput ; 19(18): 6313-6325, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37642314

RESUMEN

Nanoporous materials such as metal-organic frameworks (MOFs) have been extensively studied for their potential for adsorption and separation applications. In this respect, grand canonical Monte Carlo (GCMC) simulations have become a well-established tool for computational screenings of the adsorption properties of large sets of MOFs. However, their reliance on empirical force field potentials has limited the accuracy with which this tool can be applied to MOFs with challenging chemical environments such as open-metal sites. On the other hand, density-functional theory (DFT) is too computationally demanding to be routinely employed in GCMC simulations due to the excessive number of required function evaluations. Therefore, we propose in this paper a protocol for training machine learning potentials (MLPs) on a limited set of DFT intermolecular interaction energies (and forces) of CO2 in ZIF-8 and the open-metal site containing Mg-MOF-74, and use the MLPs to derive adsorption isotherms from first principles. We make use of the equivariant NequIP model which has demonstrated excellent data efficiency, and as such an error on the interaction energies below 0.2 kJ mol-1 per adsorbate in ZIF-8 was attained. Its use in GCMC simulations results in highly accurate adsorption isotherms and heats of adsorption. For Mg-MOF-74, a large dependence of the obtained results on the used dispersion correction was observed, where PBE-MBD performs the best. Lastly, to test the transferability of the MLP trained on ZIF-8, it was applied to ZIF-3, ZIF-4, and ZIF-6, which resulted in large deviations in the predicted adsorption isotherms and heats of adsorption. Only when explicitly training on data for all ZIFs, accurate adsorption properties were obtained. As the proposed methodology is widely applicable to guest adsorption in nanoporous materials, it opens up the possibility for training general-purpose MLPs to perform highly accurate investigations of guest adsorption.

5.
Nat Commun ; 14(1): 1008, 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36823162

RESUMEN

Proton hopping is a key reactive process within zeolite catalysis. However, the accurate determination of its kinetics poses major challenges both for theoreticians and experimentalists. Nuclear quantum effects (NQEs) are known to influence the structure and dynamics of protons, but their rigorous inclusion through the path integral molecular dynamics (PIMD) formalism was so far beyond reach for zeolite catalyzed processes due to the excessive computational cost of evaluating all forces and energies at the Density Functional Theory (DFT) level. Herein, we overcome this limitation by training first a reactive machine learning potential (MLP) that can reproduce with high fidelity the DFT potential energy surface of proton hopping around the first Al coordination sphere in the H-CHA zeolite. The MLP offers an immense computational speedup, enabling us to derive accurate reaction kinetics beyond standard transition state theory for the proton hopping reaction. Overall, more than 0.6 µs of simulation time was needed, which is far beyond reach of any standard DFT approach. NQEs are found to significantly impact the proton hopping kinetics up to ~473 K. Moreover, PIMD simulations with deuterium can be performed without any additional training to compute kinetic isotope effects over a broad range of temperatures.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda