Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hum Mol Genet ; 22(9): 1735-45, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23343716

RESUMEN

The TP53 tumor suppressor pathway is abrogated by TP53 mutations in the majority of human cancers. Increased levels of wild-type TP53 in aggressive neuroblastomas appear paradox but are tolerated by tumor cells due to co-activation of the TP53 ubiquitin ligase, MDM2. The role of the MDM2 antagonist, p14(ARF), in controlling the TP53-MDM2 balance in neuroblastoma is unresolved. In the present study, we show that conditional p14(ARF) expression substantially suppresses viability, clonogenicity and anchorage-independent growth in p14(ARF)-deficient or MYCN-amplified neuroblastoma cell lines. Furthermore, ectopic 14(ARF) expression induced accumulation of cells in the G1 phase and apoptosis, which was paralleled by accumulation of TP53 and its targets. Comparative genomic hybridization analysis of 193 primary neuroblastomas detected one homozygous deletion of CDKN2A (encoding both p14(ARF) and p16(INK4A)) and heterozygous loss of CDKN2A in 22% of tumors. Co-expression analysis of p14(ARF) and its transactivator, E2F1, in a set of 68 primary tumors revealed only a weak correlation, suggesting that further regulatory mechanisms govern p14(ARF) expression in neuroblastomas. Intriguingly, analyses utilizing chromatin immunoprecipitation revealed different histone mark-defined epigenetic activity states of p14(ARF) in neuroblastoma cell lines that correlated with endogenous p14(ARF) expression but not with episomal p14(ARF) promoter reporter activity, indicating that the native chromatin context serves to epigenetically repress p14(ARF) in neuroblastoma cells. Collectively, the data pinpoint p14(ARF) as a critical factor for efficient TP53 response in neuroblastoma cells and assign p14(ARF) as a neuroblastoma suppressor candidate that is impaired by genomic loss and epigenetic repression.


Asunto(s)
Apoptosis , Represión Epigenética , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Histonas/genética , Neuroblastoma/patología , Proteína p14ARF Supresora de Tumor/genética , Línea Celular Tumoral , Hibridación Genómica Comparativa , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Eliminación de Gen , Expresión Génica , Histonas/metabolismo , Humanos , Pérdida de Heterocigocidad , Masculino , Neuroblastoma/genética , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-mdm2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p14ARF Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Cytometry A ; 87(6): 524-40, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25630981

RESUMEN

Computational approaches for automatic analysis of image-based high-throughput and high-content screens are gaining increased importance to cope with the large amounts of data generated by automated microscopy systems. Typically, automatic image analysis is used to extract phenotypic information once all images of a screen have been acquired. However, also in earlier stages of large-scale experiments image analysis is important, in particular, to support and accelerate the tedious and time-consuming optimization of the experimental conditions and technical settings. We here present a novel approach for automatic, large-scale analysis and experimental optimization with application to a screen on neuroblastoma cell lines. Our approach consists of cell segmentation, tracking, feature extraction, classification, and model-based error correction. The approach can be used for experimental optimization by extracting quantitative information which allows experimentalists to optimally choose and to verify the experimental parameters. This involves systematically studying the global cell movement and proliferation behavior. Moreover, we performed a comprehensive phenotypic analysis of a large-scale neuroblastoma screen including the detection of rare division events such as multi-polar divisions. Major challenges of the analyzed high-throughput data are the relatively low spatio-temporal resolution in conjunction with densely growing cells as well as the high variability of the data. To account for the data variability we optimized feature extraction and classification, and introduced a gray value normalization technique as well as a novel approach for automatic model-based correction of classification errors. In total, we analyzed 4,400 real image sequences, covering observation periods of around 120 h each. We performed an extensive quantitative evaluation, which showed that our approach yields high accuracies of 92.2% for segmentation, 98.2% for tracking, and 86.5% for classification.


Asunto(s)
Movimiento Celular/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroblastoma/fisiopatología , Reconocimiento de Normas Patrones Automatizadas/métodos , Línea Celular Tumoral , Núcleo Celular/fisiología , Proliferación Celular/fisiología , Biología Computacional/métodos , Humanos , Mitosis/fisiología , Proteína Proto-Oncogénica N-Myc , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño , Biología de Sistemas/métodos , Proteína p53 Supresora de Tumor/genética
3.
Cell Syst ; 5(3): 237-250.e8, 2017 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-28843484

RESUMEN

While many tumors initially respond to chemotherapy, regrowth of surviving cells compromises treatment efficacy in the long term. The cell-biological basis of this regrowth is not understood. Here, we characterize the response of individual, patient-derived neuroblastoma cells driven by the prominent oncogene MYC to the first-line chemotherapy, doxorubicin. Combining live-cell imaging, cell-cycle-resolved transcriptomics, and mathematical modeling, we demonstrate that a cell's treatment response is dictated by its expression level of MYC and its cell-cycle position prior to treatment. All low-MYC cells enter therapy-induced senescence. High-MYC cells, by contrast, disable their cell-cycle checkpoints, forcing renewed proliferation despite treatment-induced DNA damage. After treatment, the viability of high-MYC cells depends on their cell-cycle position during treatment: newborn cells promptly halt in G1 phase, repair DNA damage, and form re-growing clones; all other cells show protracted DNA repair and ultimately die. These findings demonstrate that fast-proliferating tumor cells may resist cytotoxic treatment non-genetically, by arresting within a favorable window of the cell cycle.


Asunto(s)
Puntos de Control del Ciclo Celular/genética , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad/genética , Humanos , Modelos Teóricos , Neuroblastoma/genética , Cultivo Primario de Células , Transcriptoma/genética
4.
Cell Cycle ; 12(7): 1091-104, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23462184

RESUMEN

Relapse with drug-resistant disease is the main cause of death in MYCN-amplified neuroblastoma patients. MYCN-amplified neuroblastoma cells in vitro are characterized by a failure to arrest at the G(1)-S checkpoint after irradiation- or drug-induced DNA damage. We show that several MYCN-amplified cell lines harbor additional chromosomal aberrations targeting p53 and/or pRB pathway components, including CDK4/CCND1/MDM2 amplifications, p16INK4A/p14ARF deletions or TP53 mutations. Cells with these additional aberrations undergo significantly lower levels of cell death after doxorubicin treatment compared with MYCN-amplified cells, with no additional mutations in these pathways. In MYCN-amplified cells CDK4 expression is elevated, increasing the competition between CDK4 and CDK2 for binding p21. This results in insufficient p21 to inhibit CDK2, leading to high CDK4 and CDK2 kinase activity upon doxorubicin treatment. CDK4 inhibition by siRNAs, selective small compounds or p19(INK4D) overexpression partly restored G(1)-S arrest, delayed S-phase progression and reduced cell viability upon doxorubicin treatment. Our results suggest a specific function of p19(INK4D), but not p16(INK4A), in sensitizing MYCN-amplified cells with a functional p53 pathway to doxorubicin-induced cell death. In summary, the CDK4/cyclin D-pRB axis is altered in MYCN-amplified cells to evade a G(1)-S arrest after doxorubicin-induced DNA damage. Additional chromosomal aberrations affecting the p53-p21 and CDK4-pRB axes compound the effects of MYCN on the G(1) checkpoint and reduce sensitivity to cell death after doxorubicin treatment. CDK4 inhibition partly restores G(1)-S arrest and sensitizes cells to doxorubicin-mediated cell death in MYCN-amplified cells with an intact p53 pathway.


Asunto(s)
Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Daño del ADN/efectos de los fármacos , Doxorrubicina/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Apoptosis , Línea Celular Tumoral , Aberraciones Cromosómicas , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína de Retinoblastoma/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
5.
Cancer Lett ; 331(1): 35-45, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23186832

RESUMEN

High-risk neuroblastomas often harbor structural chromosomal alterations, including amplified MYCN, and usually have a near-di/tetraploid DNA index, but the mechanisms creating tetraploidy remain unclear. Gene-expression analyses revealed that certain MYCN/MYC and p53/pRB-E2F target genes, especially regulating mitotic processes, are strongly expressed in near-di/tetraploid neuroblastomas. Using a functional RNAi screening approach and live-cell imaging, we identified a group of genes, including MAD2L1, which after knockdown induced mitotic-linked cell death in MYCN-amplified and TP53-mutated neuroblastoma cells. We found that MYCN/MYC-mediated overactivation of the metaphase-anaphase checkpoint synergizes with loss of p53-p21 function to prevent arrest or apoptosis of tetraploid neuroblastoma cells.


Asunto(s)
Apoptosis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Neuroblastoma/patología , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/metabolismo , Ploidias , Huso Acromático/genética , Proteína p53 Supresora de Tumor/metabolismo , Western Blotting , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente Indirecta , Humanos , Hibridación Fluorescente in Situ , Lactante , Proteínas Mad2 , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Salivales Ricas en Prolina/genética , Proteínas Salivales Ricas en Prolina/metabolismo , Células Tumorales Cultivadas , Proteína p53 Supresora de Tumor/genética
6.
PLoS One ; 7(12): e50988, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251412

RESUMEN

Neuroblastoma is the most common extra-cranial solid tumor of early childhood. Standard therapies are not effective in case of poor prognosis and chemotherapy resistance. To improve drug therapy, it is imperative to discover new targets that play a substantial role in tumorigenesis of neuroblastoma. The mitotic machinery is an attractive target for therapeutic interventions and inhibitors can be developed to target mitotic entry, spindle apparatus, spindle activation checkpoint, and mitotic exit. We present an elaborate analysis pipeline to determine cancer specific therapeutic targets by first performing a focused gene expression analysis to select genes followed by a gene knockdown screening assay of live cells. We interrogated gene expression studies of neuroblastoma tumors and selected 240 genes relevant for tumorigenesis and cell cycle. With these genes we performed time-lapse screening of gene knockdowns in neuroblastoma cells. We classified cellular phenotypes and used the temporal context of the perturbation effect to determine the sequence of events, particularly the mitotic entry preceding cell death. Based upon this phenotype kinetics from the gene knockdown screening, we inferred dynamic gene functions in mitosis and cell proliferation. We identified six genes (DLGAP5, DSCC1, SMO, SNRPD1, SSBP1, and UBE2C) with a vital role in mitosis and these are promising therapeutic targets for neuroblastoma. Images and movies of every time point of all screened genes are available at https://ichip.bioquant.uni-heidelberg.de.


Asunto(s)
Transformación Celular Neoplásica/genética , Técnicas de Silenciamiento del Gen , Neuroblastoma/genética , Huso Acromático/genética , Imagen de Lapso de Tiempo/métodos , Ciclo Celular/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/metabolismo , Humanos , Neuroblastoma/metabolismo , Huso Acromático/metabolismo
7.
Cancer Res ; 71(8): 3142-51, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21385898

RESUMEN

A distal portion of human chromosome 1p is often deleted in neuroblastomas and other cancers and it is generally assumed that this region harbors one or more tumor suppressor genes. In neuroblastoma, a 261 kb region at 1p36.3 that encompasses the smallest region of consistent deletion pinpoints the locus for calmodulin binding transcription activator 1 (CAMTA1). Low CAMTA1 expression is an independent predictor of poor outcome in multivariate survival analysis, but its potential functionality in neuroblastoma has not been explored. In this study, we used inducible cell models to analyze the impact of CAMTA1 on neuroblastoma biology. In neuroblastoma cells that expressed little endogenous CAMTA1, its ectopic expression slowed cell proliferation, increasing the relative proportion of cells in G(1)/G(0) phases of the cell cycle, inhibited anchorage-independent colony formation, and suppressed the growth of tumor xenografts. CAMTA1 also induced neurite-like processes and markers of neuronal differentiation in neuroblastoma cells. Further, retinoic acid and other differentiation- inducing stimuli upregulated CAMTA1 expression in neuroblastoma cells. Transciptome analysis revealed 683 genes regulated on CAMTA1 induction and gene ontology analysis identified genes consistent with CAMTA1-induced phenotypes, with a significant enrichment for genes involved in neuronal function and differentiation. Our findings define properties of CAMTA1 in growth suppression and neuronal differentiation that support its assignment as a 1p36 tumor suppressor gene in neuroblastoma.


Asunto(s)
Proteínas de Unión al Calcio/genética , Cromosomas Humanos Par 1 , Neuroblastoma/genética , Transactivadores/genética , Secuencia de Aminoácidos , Animales , Proteínas de Unión al Calcio/biosíntesis , Diferenciación Celular/genética , Procesos de Crecimiento Celular/genética , Línea Celular Tumoral , Genes Supresores de Tumor , Humanos , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Transactivadores/biosíntesis , Regulación hacia Arriba
8.
Cancer Res ; 70(9): 3791-802, 2010 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-20424123

RESUMEN

The cell cycle regulator, SKP2, is overexpressed in various cancers and plays a key role in p27 degradation, which is involved in tumor cell dedifferentiation. Little is known about the mechanisms leading to impaired SKP2 transcriptional control in tumor cells. We used neuroblastoma as a model to study SKP2 regulation because SKP2 transcript levels gradually increase with aggressiveness of neuroblastoma subtypes. The highest SKP2 levels are found in neuroblastomas with amplified MYCN. Accordingly, we found 5.5-fold (range, 2-9.5) higher SKP2 core promoter activity in MYCN-amplified cells. Higher SKP2 core promoter activity in MYCN-amplified cells is mediated through a defined region at the transcriptional start site. This region includes a specific E2F-binding site that makes SKP2 activation largely independent of mitogenic signals integrated through the SP1/ELK-1 site. We show by chromatin immunoprecipitation that SKP2 activation through the transcriptional start site in MYCN-amplified cells is associated with the low abundance of pRB-E2F1 complexes bound to the SKP2 promoter. Transcriptional control of SKP2 through this regulatory mechanism can be reestablished in MYCN-amplified cells by restoring pRB activity using selective small compound inhibitors of CDK4. In contrast, doxorubicin or nutlin-3 treatment-both leading to p53-p21 activation-or CDK2 inhibition had no effect on SKP2 regulation in MYCN-amplified cells. Together, this implies that deregulated MYCN protein levels in MYCN-amplified neuroblastoma cells activate SKP2 through CDK4 induction, abrogating repressive pRB-E2F1 complexes bound to the SKP2 promoter.


Asunto(s)
Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Proteínas Quinasas Asociadas a Fase-S/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Factor de Transcripción E2F1/metabolismo , Amplificación de Genes , Regulación Neoplásica de la Expresión Génica , Humanos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/metabolismo , Proteínas Nucleares/biosíntesis , Proteínas Oncogénicas/biosíntesis , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína de Retinoblastoma/metabolismo , Proteínas Quinasas Asociadas a Fase-S/biosíntesis , Sitio de Iniciación de la Transcripción , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda