Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 628(8006): 122-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38448590

RESUMEN

Genomic imprinting-the non-equivalence of maternal and paternal genomes-is a critical process that has evolved independently in many plant and mammalian species1,2. According to kinship theory, imprinting is the inevitable consequence of conflictive selective forces acting on differentially expressed parental alleles3,4. Yet, how these epigenetic differences evolve in the first place is poorly understood3,5,6. Here we report the identification and molecular dissection of a parent-of-origin effect on gene expression that might help to clarify this fundamental question. Toxin-antidote elements (TAs) are selfish elements that spread in populations by poisoning non-carrier individuals7-9. In reciprocal crosses between two Caenorhabditis tropicalis wild isolates, we found that the slow-1/grow-1 TA is specifically inactive when paternally inherited. This parent-of-origin effect stems from transcriptional repression of the slow-1 toxin by the PIWI-interacting RNA (piRNA) host defence pathway. The repression requires PIWI Argonaute and SET-32 histone methyltransferase activities and is transgenerationally inherited via small RNAs. Remarkably, when slow-1/grow-1 is maternally inherited, slow-1 repression is halted by a translation-independent role of its maternal mRNA. That is, slow-1 transcripts loaded into eggs-but not SLOW-1 protein-are necessary and sufficient to counteract piRNA-mediated repression. Our findings show that parent-of-origin effects can evolve by co-option of the piRNA pathway and hinder the spread of selfish genes that require sex for their propagation.


Asunto(s)
Caenorhabditis , Impresión Genómica , ARN de Interacción con Piwi , Secuencias Repetitivas de Ácidos Nucleicos , Animales , Femenino , Masculino , Alelos , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis/genética , Caenorhabditis/metabolismo , Cruzamientos Genéticos , Padre , Genoma/genética , Impresión Genómica/genética , Organismos Hermafroditas/genética , Histona Metiltransferasas/genética , Histona Metiltransferasas/metabolismo , Madres , Oocitos/metabolismo , ARN de Interacción con Piwi/genética , Biosíntesis de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos/genética , ARN Mensajero/genética , Toxinas Biológicas/genética , Transcripción Genética
2.
G3 (Bethesda) ; 6(8): 2467-78, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27280787

RESUMEN

Traditional loss-of-function studies in Drosophila suffer from a number of shortcomings, including off-target effects in the case of RNA interference (RNAi) or the stochastic nature of mosaic clonal analysis. Here, we describe minimal in vivo GFP interference (miGFPi) as a versatile strategy to characterize gene function and to conduct highly stringent, cell type-specific loss-of-function experiments in Drosophila miGFPi combines CRISPR/Cas9-mediated tagging of genes at their endogenous locus with an immunotag and an exogenous 21 nucleotide RNAi effector sequence with the use of a single reagent, highly validated RNAi line targeting this sequence. We demonstrate the utility and time effectiveness of this method by characterizing the function of the Polymerase I (Pol I)-associated transcription factor Tif-1a, and the previously uncharacterized gene MESR4, in the Drosophila female germline stem cell lineage. In addition, we show that miGFPi serves as a powerful technique to functionally characterize individual isoforms of a gene. We exemplify this aspect of miGFPi by studying isoform-specific loss-of-function phenotypes of the longitudinals lacking (lola) gene in neural stem cells. Altogether, the miGFPi strategy constitutes a generalized loss-of-function approach that is amenable to the study of the function of all genes in the genome in a stringent and highly time effective manner.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Drosophila/genética , Interferencia de ARN , Proteínas Represoras/genética , Factores de Transcripción/genética , Animales , Animales Modificados Genéticamente , Núcleo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Femenino , Células Germinativas , Proteínas Fluorescentes Verdes/genética , Mutación , Isoformas de Proteínas/genética , ARN Guía de Kinetoplastida , Proteínas Represoras/metabolismo , Células Madre
3.
G3 (Bethesda) ; 4(11): 2279-82, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25236734

RESUMEN

The CRISPR-associated RNA-guided nuclease Cas9 has emerged as a powerful tool for genome engineering in a variety of organisms. To achieve efficient gene targeting rates in Drosophila, current approaches require either injection of in vitro transcribed RNAs or injection into transgenic Cas9-expressing embryos. We report a simple and versatile alternative method for CRISPR-mediated genome editing in Drosophila using bicistronic Cas9/sgRNA expression vectors. Gene targeting with this single-plasmid injection approach is as efficient as in transgenic nanos-Cas9 embryos and allows the isolation of targeted knock-out and knock-in alleles by molecular screening within 2 months. Our strategy is independent of genetic background and does not require prior establishment of transgenic flies.


Asunto(s)
Sistemas CRISPR-Cas , Drosophila/genética , Marcación de Gen/métodos , Genoma de los Insectos , Edición de ARN , Animales , Plásmidos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda