Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Neurosci ; 27(32): 8546-57, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-17687032

RESUMEN

The fetal brain is sensitive to a variety of teratogens, including ethanol. We showed previously that ethanol induced mitosis and stem cell maturation, but not death, in fetal cerebral cortex-derived progenitors. We tested the hypothesis that micro-RNAs (miRNAs) could mediate the teratogenic effects of ethanol in a fetal mouse cerebral cortex-derived neurosphere culture model. Ethanol, at a level attained by alcoholics, significantly suppressed the expression of four miRNAs, miR-21, -335, -9, and -153, whereas a lower ethanol concentration, attainable during social drinking, induced miR-335 expression. A GABA(A) receptor-dependent mechanism mediated miR-21, but not miR-335 suppression, suggesting that divergent mechanisms regulate ethanol-sensitive miRNAs. Antisense-mediated suppression of miR-21 expression resulted in apoptosis, suggesting that miR-21 is an antiapoptotic factor. miR-335 knockdown promoted cell proliferation and prevented death induced by concurrently suppressing miR-21, indicating that miR-335 is a proapoptotic, antimitogenic factor whose actions are antagonistic to miR-21. Computational analyses identified two genes, Jagged-1, a Notch-receptor ligand, and embryonic-lethal abnormal vision, Drosophila-like 2 (ELAVL2), a brain-specific regulator of RNA stability, as presumptive targets of three of four ethanol-sensitive micro-RNAs. Combined knockdown of miR-335, -21, and -153 significantly increased Jagged-1 mRNA. Furthermore, ethanol induced both Jagged-1 and ELAVL2 mRNA. The collective suppression of micro-RNAs is consistent with ethanol induction of cell cycle and neuroepithelial maturation in the absence of apoptosis. These data identify a role for micro-RNAs as epigenetic intermediaries, which permit teratogens to shape complex, divergent developmental processes, and additionally demonstrate that coordinately regulated miRNAs exhibit both functional synergy and antagonism toward each other.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Etanol/administración & dosificación , Células Madre Fetales/efectos de los fármacos , MicroARNs/metabolismo , Células Neuroepiteliales/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Etanol/toxicidad , Células Madre Fetales/citología , Células Madre Fetales/metabolismo , Ratones , Ratones Endogámicos C57BL , MicroARNs/fisiología , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo
2.
J Mol Cell Cardiol ; 45(6): 770-8, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18926830

RESUMEN

The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy, remodeling, and fibroblast proliferation in the hemodynamically overloaded heart. However, the intracellular signaling mechanisms responsible for regulation of angiotensinogen (Ao), a substrate of the RAS system, are largely unknown. Here we report the identification of JNK1/2 as a negative, and p38alpha as a major positive regulator of Ao gene expression. Isolated neonatal rat ventricular myocytes (NRVM) and fibroblasts (NRFB) plated on deformable membranes coated with collagen IV, were exposed to 20% equiaxial static-stretch (0-24 h). Mechanical stretch initially depressed Ao gene expression (4 h), whereas after 8 h, Ao gene expression increased in a time-dependent manner. Blockade of JNK1/2 with SP600125 increased basal Ao gene expression in NRVM (10.52+/-1.98 fold, P<0.001) and NRFB (13.32+/-2.07 fold, P<0.001). Adenovirus-mediated expression of wild-type JNK1 significantly inhibited, whereas expression of dominant-negative JNK1 and JNK2 increased basal and stretch-mediated (24 h) Ao gene expression, showing both JNK1 and JNK2 to be negative regulators of Ao gene expression in NRVM and NRFB. Blockade of p38alpha/beta by SB202190 or p38alpha by SB203580 significantly inhibited stretch-induced (24 h) Ao gene expression, whereas expression of wild-type p38alpha increased stretch-induced Ao gene expression in both NRVM (8.41+/-1.50 fold, P<0.001) and NRFB (3.39+/-0.74 fold, P<0.001). Conversely, expression of dominant-negative p38alpha significantly inhibited stretch response. Moreover, expression of constitutively active MKK6b (E) significantly stimulated Ao gene expression in the absence of stretch, indicating that p38 activation alone is sufficient to induce Ao gene expression. Taken together p38alpha was demonstrated to be a positive regulator, whereas JNK1/2 was found to be a negative regulator of Ao gene expression. Prolonged stretch diminished JNK1/2 activation, which was accompanied by a reciprocal increase in p38 activation and Ao gene expression. This suggests that a balance in JNK1/2 and p38alpha activation determines the level of Ao gene expression in myocardial cells.


Asunto(s)
Angiotensinógeno/biosíntesis , Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células Cultivadas , Fibroblastos/citología , Regulación de la Expresión Génica/efectos de los fármacos , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 8 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 9 Activada por Mitógenos/antagonistas & inhibidores , Miocardio/metabolismo , Miocitos Cardíacos/citología , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Sistema Renina-Angiotensina/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Factores de Tiempo
3.
Int J Cardiol ; 203: 145-55, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512830

RESUMEN

Mechanical stretch is a major determinant that leads to heart failure, which is associated with a steady increase in myocardial angiotensinogen (Aogen) expression and formation of the biological peptide angiotensin II (Ang II). c-jun NH2-terminal kinase (JNK) and p38α have been found to have opposing roles on stretch-induced Aogen gene expression in neonatal rat ventricular myocytes (NRVM). JNK negatively regulated Aogen expression in NRVM following acute stretch, whereas with prolonged stretch, JNK phosphorylation was downregulated and p38α was found responsible for upregulation of Aogen expression. However, the mechanisms responsible for regulation of these kinases, especially the cross-talk between p38 and JNK1/2, remain to be determined. In this study, a combination of pharmacologic and molecular approaches (adenovirus-mediated gene transfer) were used to examine the mechanisms by which p38 regulates JNK phosphorylation in NRVM under stretch and non-stretch conditions. Pharmacologic inhibition of p38 significantly increased JNK phosphorylation in NRVM at 15 min, whereas overexpression of wild-type p38α significantly decreased JNK phosphorylation. While p38α overexpression prevented stretch-induced JNK phosphorylation, pharmacologic p38 inhibition abolished the JNK dephosphorylation during 15-60 min of stretch. Expression of constitutively-active MKK3 (MKK3CA), the upstream activator of p38, abolished JNK phosphorylation in both basal and stretched NRVM. Pharmacologic inhibition of MAP kinase phosphatase-1 (MKP-1) or protein phosphatase-1 (PP1) increased JNK phosphorylation in NRVM, suggesting the involvement of these phosphatases on reversing stretch-induced JNK activation. Inhibition of MKP-1, but not PP1, reduced JNK phosphorylation in NRVM overexpressing MKK3CA under basal conditions (no-stretch). Inhibition of MKP-1 also enhanced stretch-induced JNK phosphorylation in NRVM at 15 to 60 min. In summary, these results indicate that MKP-1 inhibits JNK phosphorylation in stretched NRVM through p38 dependent and independent mechanisms, whereas PP1 regulates JNK through a p38-independent mechanism.


Asunto(s)
Fosfatasa 1 de Especificidad Dual/fisiología , Proteínas Quinasas JNK Activadas por Mitógenos/fisiología , Proteína Quinasa 14 Activada por Mitógenos/fisiología , Miocitos Cardíacos/fisiología , Animales , Animales Recién Nacidos , Fenómenos Biomecánicos , Ratas , Ratas Sprague-Dawley
4.
J Clin Exp Cardiolog ; 5(6): 314, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25485172

RESUMEN

The role of mechanical force as an important regulator of structure and function of mammalian cells, tissues, and organs has recently been recognized. However, mechanical overload is a pathogenesis or comorbidity existing in a variety of heart diseases, such as hypertension, aortic regurgitation and myocardial infarction. Physical stimuli sensed by cells are transmitted through intracellular signal transduction pathways resulting in altered physiological responses or pathological conditions. Emerging evidence from experimental studies indicate that ß1-integrin and the angiotensin II type I (AT1) receptor play critical roles as mechanosensors in the regulation of heart contraction, growth and leading to heart failure. Integrin link the extracellular matrix and the intracellular cytoskeleton to initiate the mechanical signalling, whereas, the AT1 receptor could be activated by mechanical stress through an angiotensin-II-independent mechanism. Recent studies show that both Integrin and AT1 receptor and their downstream signalling factors including MAPKs, AKT, FAK, ILK and GTPase regulate heart function in cardiac myocytes. In this review we describe the role of mechanical sensors residing within the plasma membrane, mechanical sensor induced downstream signalling factors and its potential roles in cardiac contraction and growth.

5.
Int J Cardiol ; 168(1): 436-45, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23058350

RESUMEN

BACKGROUND: The cardiac renin-angiotensin system (RAS) has been implicated in mediating myocyte hypertrophy and remodeling, although the biochemical mechanisms responsible for regulating the local RAS are poorly understood. Caveolin-1 (Cav-1)/Cav-3 double-knockout mice display cardiac hypertrophy, and in vitro disruption of lipid rafts/caveolae using methyl-ß-cyclodextrin (MßCD) abolishes cardiac protection. METHODS: In this study, neonatal rat ventricular myocytes (NRVM) were used to determine whether lipid rafts/caveolae may be involved in the regulation of angiotensinogen (Ao) gene expression, a substrate of the RAS system. RESULTS: Treatment with MßCD caused a time-dependent upregulation of Ao gene expression, which was associated with differential regulation of mitogen-activated protein (MAP) kinases ERK1/2, p38 and JNK phosphorylation. JNK was highly phosphorylated shortly after MßCD treatment (2-30 min), whereas marked activation of ERK1/2 and p38 occurred much later (2-4h). ß1D-Integrin was required for MßCD-induced activation of the MAP kinases. Pharmacologic inhibition of ERK1/2 and JNK enhanced MßCD-induced Ao gene expression, whereas p38 blockade inhibited this response. Adenovirus-mediated expression of wild-type p38α enhanced MßCD-induced Ao gene expression; conversely expression of dominant negative p38α blocked the stimulatory effects of MßCD. Expression of Cav-3 siRNA stimulated Ao gene expression, whereas overexpression of Cav-3 was inhibitory. Cav-1 and Cav-3 expression levels were found to be positively regulated by p38, but unaffected by ERK1/2 and JNK. CONCLUSION: Collectively, these studies indicate that lipid rafts/caveolae couple to Ao gene expression through a mechanism that involves ß1-integrin and the differential actions of MAP kinase family members.


Asunto(s)
Angiotensinógeno/biosíntesis , Caveolina 3/biosíntesis , Regulación de la Expresión Génica , Integrina beta1/biosíntesis , Miocitos Cardíacos/metabolismo , Animales , Animales Recién Nacidos , Caveolina 1/biosíntesis , Células Cultivadas , Técnicas de Silenciamiento del Gen/métodos , Microdominios de Membrana/metabolismo , ARN Interferente Pequeño/biosíntesis , Ratas , Ratas Sprague-Dawley
6.
Methods Mol Biol ; 1066: 45-56, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23955732

RESUMEN

Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FB) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Typically, these cell types are separated using Percoll density gradient procedures. Cells located between the Percoll bands (interband cells [IBCs]), which contain less mature NRVM and a variety of non-myocytes, including coronary vascular smooth muscle cells and endothelial cells (ECs), are routinely discarded. However, we have demonstrated that IBCs readily attach to extracellular matrix-coated coverslips, plastic culture dishes, and deformable membranes to form a 2-dimensional cardiac tissue layer which quickly develops spontaneous contraction within 24 h, providing a robust coculture model for the study of cell-to-cell signaling and contractile studies. Below, we describe methods that provide good cell yield and viability of IBCs during isolation of NRVM and FB obtained from 0- to 3-day-old neonatal rat pups. Basic characterization of IBCs and methods for use in intracellular calcium and contractile experiments are also presented. This method maximizes the use of cells obtained from neonatal rat hearts.


Asunto(s)
Calcio/análisis , Fibroblastos/citología , Contracción Miocárdica/fisiología , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Células Cultivadas , Centrifugación por Gradiente de Densidad , Fibroblastos/metabolismo , Fibroblastos/fisiología , Corazón/fisiología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal
7.
Methods Mol Biol ; 1066: 57-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23955733

RESUMEN

Mechanical stretch is a major factor for myocardial hypertrophy and heart failure. Stretch activates mechanical sensors from cardiac myocytes, leading to a series of signal transduction cascades, which can result in cell malfunction and remodeling. It is well known that mechanical stretch also induces the release of paracrine factors from cardiac fibroblasts, as well as myocytes. Due to complicated circumstance of heart tissue, it is difficult to fully investigate the characteristics of these factors in situ. Here we describe static stretch and conditioned medium experiments as methods to examine the function of paracrine factors between primary cultured cardiac myocytes and fibroblasts.


Asunto(s)
Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , Comunicación Paracrina/fisiología , Estrés Mecánico , Animales , Cardiomegalia , Células Cultivadas , Centrifugación por Gradiente de Densidad , Matriz Extracelular/metabolismo , Corazón/fisiología , Sistema de Señalización de MAP Quinasas , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteínas Musculares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Ratas Sprague-Dawley
8.
Int J Cardiol ; 168(4): 3884-95, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-23907041

RESUMEN

BACKGROUND: Anthrax lethal toxin (LT), secreted by Bacillus anthracis, causes severe cardiac dysfunction by unknown mechanisms. LT specifically cleaves the docking domains of MAPKK (MEKs); thus, we hypothesized that LT directly impairs cardiac function through dysregulation of MAPK signaling mechanisms. METHODS AND RESULTS: In a time-course study of LT toxicity, echocardiography revealed acute diastolic heart failure accompanied by pulmonary regurgitation and left atrial dilation in adult Sprague-Dawley rats at time points corresponding to dysregulated JNK, phospholamban (PLB) and protein phosphatase 2A (PP2A) myocardial signaling. Using isolated rat ventricular myocytes, we identified the MEK7-JNK1-PP2A-PLB signaling axis to be important for regulation of intracellular calcium (Ca(2+)(i)) handling, PP2A activation and targeting of PP2A-B56α to Ca(2+)(i) handling proteins, such as PLB. Through a combination of gain-of-function and loss-of-function studies, we demonstrated that over-expression of MEK7 protects against LT-induced PP2A activation and Ca(2+)(i) dysregulation through activation of JNK1. Moreover, targeted phosphorylation of PLB-Thr(17) by Akt improved sarcoplasmic reticulum Ca(2+)(i) release and reuptake during LT toxicity. Co-immunoprecipitation experiments further revealed the pivotal role of MEK7-JNK-Akt complex formation for phosphorylation of PLB-Thr(17) during acute LT toxicity. CONCLUSIONS: Our findings support a cardiogenic mechanism of LT-induced diastolic dysfunction, by which LT disrupts JNK1 signaling and results in Ca(2+)(i) dysregulation through diminished phosphorylation of PLB by Akt and increased dephosphorylation of PLB by PP2A. Integration of the MEK7-JNK1 signaling module with Akt represents an important stress-activated signalosome that may confer protection to sustain cardiac contractility and maintain normal levels of Ca(2+)(i) through PLB-T(17) phosphorylation.


Asunto(s)
Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Proteínas de Unión al Calcio/metabolismo , Insuficiencia Cardíaca Diastólica/inducido químicamente , Insuficiencia Cardíaca Diastólica/metabolismo , Transducción de Señal/fisiología , Enfermedad Aguda , Animales , Proteínas de Unión al Calcio/antagonistas & inhibidores , Células Cultivadas , Masculino , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
9.
Methods Mol Biol ; 843: 245-63, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22222538

RESUMEN

Murine models are currently the preferred approach for studying the molecular mechanisms of cardiac dysfunction resulting from changes in gene expression. Transgenic and gene-targeting methods can be used to generate mice with altered cardiac size and function, and as a result, in vivo techniques are indispensible in evaluating cardiac phenotype. Traditionally, the pathologic assessment of sacrificed hearts was used to study cardiac pathophysiology in small animals. Below we describe the use of ultrasound biomicroscopy-Doppler analysis to temporally assess cardiac function in mouse embryos. Methods are described for obtaining 2D, pulsed-wave Doppler, and M-mode imaging using standard clinical cardiac ultrasound imaging planes.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Microscopía/métodos , Ultrasonido/métodos , Animales , Circulación Sanguínea , Color , Femenino , Ventrículos Cardíacos/embriología , Ratones , Embarazo , Venas Pulmonares/embriología , Venas Pulmonares/fisiología , Función Ventricular
10.
Methods Mol Biol ; 843: 205-14, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22222535

RESUMEN

Neonatal rat ventricular myocytes (NRVM) and fibroblasts (FBs) serve as in vitro models for studying fundamental mechanisms underlying cardiac pathologies, as well as identifying potential therapeutic targets. Both cell types are relatively easy to culture as monolayers and can be manipulated using molecular and pharmacological tools. Because NRVM cease to proliferate after birth, and FBs undergo phenotypic changes and senescence after a few passages in tissue culture, primary cultures of both cell types are required for experiments. Below we describe methods that provide good cell yield and viability of primary cultures of NRVM and FBs from 0 to 3-day-old neonatal rat pups.


Asunto(s)
Separación Celular/métodos , Fibroblastos/citología , Miocitos Cardíacos/citología , Animales , Animales Recién Nacidos , Adhesión Celular , Supervivencia Celular , Ventrículos Cardíacos/citología , Ratas , Recolección de Tejidos y Órganos
11.
PLoS One ; 6(6): e21285, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21712982

RESUMEN

BACKGROUND: We tested the hypothesis that 5-Hydroxydecanoic acid (5HD), a putative mitoK(ATP) channel blocker, will reverse sepsis-induced cardiodynamic and adult rat ventricular myocyte (ARVM) contractile dysfunction, restore mitochondrial membrane permeability alterations and improve survival. METHODOLOGY/PRINCIPAL FINDINGS: Male Sprague-Dawley rats (350-400 g) were made septic using 400 mg/kg cecal inoculum, ip. Sham animals received 5% dextrose water, ip. The Voltage Dependent Anion Channels (VDAC1), Bax and cytochrome C levels were determined in isolated single ARVMs obtained from sham and septic rat heart. Mitochondria and cytosolic fractions were isolated from ARVMs treated with norepinephrine (NE, 10 µmoles) in the presence/absence of 5HD (100 µmoles). A continuous infusion of 5HD using an Alzet pump reversed sepsis-induced mortality when administered at the time of induction of sepsis (-40%) and at 6 hr post-sepsis (-20%). Electrocardiography revealed that 5HD reversed sepsis-induced decrease in the average ejection fraction, Simpsons+m Mode (53.5±2.5 in sepsis and 69.2±1.2 at 24 hr in sepsis+5HD vs. 79.9±1.5 basal group) and cardiac output (63.3±1.2 mL/min sepsis and 79.3±3.9 mL/min at 24 hr in sepsis+5HD vs. 85.8±1.5 mL/min basal group). The treatment of ARVMs with 5HD also reversed sepsis-induced depressed contractility in both the vehicle and NE-treated groups. Sepsis produced a significant downregulation of VDAC1, and upregulation of Bax levels, along with mitochondrial membrane potential collapse in ARVMs. Pretreatment of septic ARVMs with 5HD blocked a NE-induced decrease in the VDAC1 and release of cytochrome C. CONCLUSION: The data suggest that Bax activation is an upstream event that may precede the opening of the mitoK(ATP) channels in sepsis. We concluded that mitoK(ATP) channel inhibition via decreased mitochondrial membrane potential and reduced release of cytochrome C provided protection against sepsis-induced ARVM and myocardial contractile dysfunction.


Asunto(s)
Ácidos Decanoicos/farmacología , Hidroxiácidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Miocardio/metabolismo , Miocitos Cardíacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Sepsis/fisiopatología , Animales , Antiarrítmicos/farmacología , Temperatura Corporal/efectos de los fármacos , Citocromos c/metabolismo , Ácidos Decanoicos/metabolismo , Hemodinámica , Hidroxiácidos/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/ultraestructura , Contracción Miocárdica/efectos de los fármacos , Miocardio/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Bloqueadores de los Canales de Potasio/metabolismo , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sepsis/microbiología , Sepsis/mortalidad , Factor de Necrosis Tumoral alfa/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Cardiovasc Res ; 90(1): 88-96, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-21131638

RESUMEN

AIMS: Angiotensin II (Ang II) stimulates cardiac remodelling and fibrosis in the mechanically overloaded myocardium. Although Rho GTPases regulate several cellular processes, including myocardial remodelling, involvement in mediating mechanical stretch-induced regulation of angiotensinogen (Ao), the precursor to Ang II, remains to be determined. We, therefore, examined the role and associated signalling mechanisms of Rho GTPases (Rac1 and RhoA) in regulation of Ao gene expression in a stretch model of neonatal rat cardiac fibroblasts (CFs). METHODS AND RESULTS: CFs were plated on deformable stretch membranes. Equiaxial mechanical stretch caused significant activation of both Rac1 and RhoA within 2-5 min. Rac1 activity returned to control levels after 4 h, whereas RhoA remained at a high level of activity until the end of the stretch period (24 h). Mechanical stretch initially caused a moderate decrease in Ao gene expression, but was significantly increased at 8-24 h. RhoA had a major role in mediating both the stretch-induced inhibition of Ao at 4 h and the subsequent upregulation of Ao expression at 24 h. ß1 integrin receptor blockade by Tac ß1 expression impaired acute (2 and 15 min) stretch-induced Rac1 activation, but increased RhoA activity. Molecular experiments revealed that Ao gene expression was inhibited by Rac1 through both JNK-dependent and independent mechanisms, and stimulated by RhoA through a p38-dependent mechanism. CONCLUSION: These results indicate that stretch-induced activation of Rac1 and RhoA differentially regulates Ao gene expression by modulating p38 and JNK activation.


Asunto(s)
Angiotensinógeno/metabolismo , Forma de la Célula , Fibroblastos/enzimología , Mecanotransducción Celular , Miocardio/enzimología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Angiotensinógeno/genética , Animales , Animales Recién Nacidos , Células Cultivadas , Activación Enzimática , Regulación de la Expresión Génica , Integrina beta1/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Miocardio/citología , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/metabolismo , Estrés Mecánico , Factores de Tiempo , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rhoA/genética
13.
Front Biosci (Landmark Ed) ; 14(6): 2307-34, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273203

RESUMEN

Integrins are heterodimeric cell-surface molecules, which act as the principle mediators of molecular dialog between a cell and its extracellular matrix environment. In addition to their structural functions, integrins mediate signaling from the extracellular space into the cell through integrin-associated signaling and adaptor molecules such as FAK (focal adhesion kinase), ILK (integrin-linked kinase), PINCH (particularly interesting new cysteine-histidine rich protein) and Nck2 (non-catalytic (region of) tyrosine kinase adaptor protein-2). Via these molecules, integrin signaling tightly and cooperatively interacts with receptor tyrosine kinases (RTKs) signaling to regulate survival, proliferation and cell shape as well as polarity, adhesion, migration and differentiation. In the heart and blood vessels, the function and regulation of these molecules can be partially disturbed and thus contribute to cardiovascular diseases such as cardiac hypertrophy and atherosclerosis. In this review, we discuss the primary mechanisms of action and signaling of integrins in the cardiac and vascular system in normal and pathological states, as well as therapeutic strategies for targeting these systems (1).


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Integrinas/fisiología , Transducción de Señal , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/terapia , Membrana Celular/metabolismo , Humanos , Integrinas/metabolismo , Receptor Cross-Talk
14.
Front Biosci (Landmark Ed) ; 14(6): 2335-57, 2009 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-19273204

RESUMEN

Anthrax is a disease caused by infection with spores from the bacteria Bacillus anthracis. After entering the body, the spores germinate into bacteria and secrete a toxin that causes local edema and, in systemic infections, cardiovascular collapse and death. The toxin is a tripartite polypeptide, consisting of protective antigen (PA), lethal factor (LF) and edema factor (EF), which have key roles in the bacterial pathogenesis and disease progression. PA facilitates transfer of LF and EF to the cytosol. Lethal toxin is a zinc metalloproteinase, which has the capacity to inactivate mitogen-activated protein (MAP) kinase kinase (MEK) and stimulates the release of sepsis-related cytokines tumor necrosis factor-alpha and interleukin-1beta. Edema factor is a calmodulin (CaM)-dependent adenylate cyclase, which increases levels of cyclic AMP, causing impaired neutrophil function and disruption of water balance that ultimately results in massive tissue edema. Together, the toxins effectively inhibit host innate and adaptive immune responses, allowing the bacteria to grow unrestrained and overwhelming any resistance. Clinically, inhalational anthrax presents in a biphasic pattern with initial nonspecific "flu-like" symptoms nausea and vomiting 1 to 4 days after exposure, followed by severe illness with dyspnea, high fever and circulatory shock. The latter symptoms represent a terminal stage and treatment is often ineffective when started at that time. Key indicators of early anthrax cardiovascular-related pathogenesis include mediastinal widening in association with pleural effusion and edema. In this review, we describe the current understanding of anthrax toxins on cellular function in the context of cardiovascular function and discuss potential therapeutic strategies.


Asunto(s)
Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Sistema Cardiovascular/efectos de los fármacos , Carbunco/fisiopatología , Carbunco/terapia , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda