Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochem Soc Trans ; 52(3): 1489-1502, 2024 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-38856041

RESUMEN

The tumor microenvironment (TME) is a complex and dynamic ecosystem that adjoins the cancer cells within solid tumors and comprises distinct components such as extracellular matrix, stromal and immune cells, blood vessels, and an abundance of signaling molecules. In recent years, the mechanical properties of the TME have emerged as critical determinants of tumor progression and therapeutic response. Aberrant mechanical cues, including altered tissue architecture and stiffness, contribute to tumor progression, metastasis, and resistance to treatment. Moreover, burgeoning immunotherapies hold great promise for harnessing the immune system to target and eliminate solid malignancies; however, their success is hindered by the hostile mechanical landscape of the TME, which can impede immune cell infiltration, function, and persistence. Consequently, understanding TME mechanoimmunology - the interplay between mechanical forces and immune cell behavior - is essential for developing effective solid cancer therapies. Here, we review the role of TME mechanics in tumor immunology, focusing on recent therapeutic interventions aimed at modulating the mechanical properties of the TME to potentiate T cell immunotherapies, and innovative assays tailored to evaluate their clinical efficacy.


Asunto(s)
Inmunoterapia , Neoplasias , Microambiente Tumoral , Humanos , Microambiente Tumoral/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Matriz Extracelular/metabolismo , Matriz Extracelular/inmunología , Linfocitos T/inmunología
2.
Cancer Res Commun ; 3(8): 1524-1537, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37575281

RESUMEN

Solid cancer cells escape the primary tumor mass by transitioning from an epithelial-like state to an invasive migratory state. As they escape, metastatic cancer cells employ interchangeable modes of invasion, transitioning between fibroblast-like mesenchymal movement to amoeboid migration, where cells display a rounded morphology and navigate the extracellular matrix in a protease-independent manner. However, the gene transcripts that orchestrate the switch between epithelial, mesenchymal, and amoeboid states remain incompletely mapped, mainly due to a lack of methodologies that allow the direct comparison of the transcriptomes of spontaneously invasive cancer cells in distinct migratory states. Here, we report a novel single-cell isolation technique that provides detailed three-dimensional data on melanoma growth and invasion, and enables the isolation of live, spontaneously invasive cancer cells with distinct morphologies and invasion parameters. Via the expression of a photoconvertible fluorescent protein, compact epithelial-like cells at the periphery of a melanoma mass, elongated cells in the process of leaving the mass, and rounded amoeboid cells invading away from the mass were tagged, isolated, and subjected to single-cell RNA sequencing. A total of 462 differentially expressed genes were identified, from which two candidate proteins were selected for further pharmacologic perturbation, yielding striking effects on tumor escape and invasion, in line with the predictions from the transcriptomics data. This work describes a novel, adaptable, and readily implementable method for the analysis of the earliest phases of tumor escape and metastasis, and its application to the identification of genes underpinning the invasiveness of malignant melanoma. Significance: This work describes a readily implementable method that allows for the isolation of individual live tumor cells of interest for downstream analyses, and provides the single-cell transcriptomes of melanoma cells at distinct invasive states, both of which open avenues for in-depth investigations into the transcriptional regulation of the earliest phases of metastasis.


Asunto(s)
Melanoma , Transcriptoma , Humanos , Transcriptoma/genética , Invasividad Neoplásica/genética , Movimiento Celular/genética , Melanoma/genética , Línea Celular Tumoral
3.
Dev Cell ; 57(18): 2237-2247.e8, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36113483

RESUMEN

Cytotoxic T lymphocytes (CTLs) lyse target cells by delivering lytic granules that contain the pore former perforin to the cytotoxic immunological synapse. Here, we establish that opposing cytoskeletal forces drive lytic granule polarization and simultaneously shape T cell synapse topography to enhance target perforation. At the cell rear, actomyosin contractility drives the anterograde movement of lytic granules toward the nucleus. At the synapse, dynein-derived forces induce negatively curved membrane pockets to which granules are transported around the nucleus. These highly concave degranulation pockets are located directly opposite positively curved bulges on the target cell membrane. We identify a curvature bias in the action of perforin, which preferentially perforates positively curved tumor cell membrane. Together, these findings demonstrate murine and human T cell-mediated cytotoxicity to be a highly tuned mechano-biochemical system, in which the forces that polarize lytic granules locally bend the synaptic membrane to favor the unidirectional perforation of the target cell.


Asunto(s)
Actomiosina , Citotoxicidad Inmunológica , Sinapsis Inmunológicas , Perforina , Actomiosina/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Dineínas/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Ratones , Perforina/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Linfocitos T Citotóxicos/metabolismo
4.
Cancer Gene Ther ; 29(12): 1918-1929, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35869278

RESUMEN

Gastrointestinal (GI) cancers are characterized by extensive tumor stroma that both promotes tumor progression and acts as a physical barrier for adjacent tumor cells, limiting the effect of current treatment modalities. Oncolytic virotherapy is currently investigated in clinical trials as a novel therapeutic agent for different malignancies of the GI tract, but it is largely unknown whether these viruses can also target the tumor stroma. Here, we investigated the tropism of two commonly studied OVs, adenovirus and reovirus, towards primary GI fibroblasts from human oesophageal, gastric, duodenal and pancreatic carcinomas (N = 36). GI fibroblasts were susceptible to type 3 Dearing (T3D) strain R124 and bioselected mutant reovirus (jin-3) infection but not oncolytic adenovirus (Ad5-Δ24). Efficient infection and apoptosis of human and mouse GI cancer-derived fibroblasts by these reoviruses was partially dependent on the expression of the reovirus entry receptor, Junctional Adhesion Molecule-A (JAM-A). Moreover, human GI cancer organoid-fibroblast co-cultures showed higher overall infectivity when containing JAM-A expressing fibroblasts as compared to JAM-A negative fibroblasts, indicating a potential role of JAM-A expressing fibroblasts for viral dissemination. We further show that JAM-A is not only necessary for efficient reovirus infection of fibroblasts but also partially mediates reovirus-induced apoptosis, dependent on signaling through the C-terminal PDZ-domain of JAM-A. Altogether, our data show the presence of JAM-A expressing fibroblasts in both human and murine GI cancers that are amenable to infection and induction of apoptosis by reovirus, extending the potential anti-cancer actions of reovirus with stromal targeting.


Asunto(s)
Fibroblastos Asociados al Cáncer , Molécula A de Adhesión de Unión , Neoplasias , Viroterapia Oncolítica , Reoviridae , Humanos , Ratones , Animales , Reoviridae/genética , Tracto Gastrointestinal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda