Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
BMC Genomics ; 23(1): 201, 2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35279090

RESUMEN

BACKGROUND: Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. RESULTS: Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. CONCLUSIONS: Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters.


Asunto(s)
Apicomplexa , Crassostrea , Vibrio , Animales , Apoptosis/genética , Filogenia
2.
Dis Aquat Organ ; 151: 111-121, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36300764

RESUMEN

A multiplex quantitative PCR (qPCR) assay for the simultaneous detection of 3 eastern oyster Crassostrea virginica parasites, Perkinsus marinus, Haplosporidium nelsoni, and H. costale, was developed using 3 different fluorescently labeled hydrolysis probes. The primers and probe from a previously validated singleplex qPCR for P. marinus detection were combined with newly designed primers and probes specific for H. nelsoni and H. costale. The functionality of the multiplex assay was demonstrated on 2 different platforms by the linear relationship of the standard curves and similar cycle threshold (CT) values between parasites. Efficiency of the multiplex qPCR assay on the Roche and BioRad platforms ranged between 93 and 101%. The sensitivity of detection ranged between 10 and 100 copies of plasmid DNA for P. marinus and Haplosporidium spp., respectively. The concordance between the Roche and BioRad platforms in the identification of the parasites P. marinus, H. nelsoni, and H. costale was 91, 97, and 97%, respectively, with a 10-fold increase in the sensitivity of detection of Haplosporidium spp. on the BioRad thermocycler. The concordance between multiplex qPCR and histology for P. marinus, H. nelsoni, and H. costale was 54, 57, and 87%, respectively. Discordances between detection methods were largely related to localized or low levels of infections in oyster tissues, and qPCR was the more sensitive diagnostic. The multiplex qPCR developed here is a sensitive diagnostic tool for the quantification and surveillance of single and mixed infections in the eastern oyster.


Asunto(s)
Crassostrea , Haplosporidios , Ostreidae , Parásitos , Animales , Crassostrea/parasitología , Sensibilidad y Especificidad , Haplosporidios/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , ADN
3.
BMC Genomics ; 18(1): 191, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28219347

RESUMEN

Advancing the production efficiency and profitability of aquaculture is dependent upon the ability to utilize a diverse array of genetic resources. The ultimate goals of aquaculture genomics, genetics and breeding research are to enhance aquaculture production efficiency, sustainability, product quality, and profitability in support of the commercial sector and for the benefit of consumers. In order to achieve these goals, it is important to understand the genomic structure and organization of aquaculture species, and their genomic and phenomic variations, as well as the genetic basis of traits and their interrelationships. In addition, it is also important to understand the mechanisms of regulation and evolutionary conservation at the levels of genome, transcriptome, proteome, epigenome, and systems biology. With genomic information and information between the genomes and phenomes, technologies for marker/causal mutation-assisted selection, genome selection, and genome editing can be developed for applications in aquaculture. A set of genomic tools and resources must be made available including reference genome sequences and their annotations (including coding and non-coding regulatory elements), genome-wide polymorphic markers, efficient genotyping platforms, high-density and high-resolution linkage maps, and transcriptome resources including non-coding transcripts. Genomic and genetic control of important performance and production traits, such as disease resistance, feed conversion efficiency, growth rate, processing yield, behaviour, reproductive characteristics, and tolerance to environmental stressors like low dissolved oxygen, high or low water temperature and salinity, must be understood. QTL need to be identified, validated across strains, lines and populations, and their mechanisms of control understood. Causal gene(s) need to be identified. Genetic and epigenetic regulation of important aquaculture traits need to be determined, and technologies for marker-assisted selection, causal gene/mutation-assisted selection, genome selection, and genome editing using CRISPR and other technologies must be developed, demonstrated with applicability, and application to aquaculture industries.Major progress has been made in aquaculture genomics for dozens of fish and shellfish species including the development of genetic linkage maps, physical maps, microarrays, single nucleotide polymorphism (SNP) arrays, transcriptome databases and various stages of genome reference sequences. This paper provides a general review of the current status, challenges and future research needs of aquaculture genomics, genetics, and breeding, with a focus on major aquaculture species in the United States: catfish, rainbow trout, Atlantic salmon, tilapia, striped bass, oysters, and shrimp. While the overall research priorities and the practical goals are similar across various aquaculture species, the current status in each species should dictate the next priority areas within the species. This paper is an output of the USDA Workshop for Aquaculture Genomics, Genetics, and Breeding held in late March 2016 in Auburn, Alabama, with participants from all parts of the United States.


Asunto(s)
Acuicultura/métodos , Cruzamiento/métodos , Genómica/métodos , Animales , Mapeo Cromosómico , Variación Genética , Estados Unidos
4.
BMC Microbiol ; 16: 1, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728027

RESUMEN

BACKGROUND: The probiotic bacterium Phaeobacter inhibens strain S4Sm, isolated from the inner shell surface of a healthy oyster, secretes the antibiotic tropodithietic acid (TDA), is an excellent biofilm former, and increases oyster larvae survival when challenged with bacterial pathogens. In this study, we investigated the specific roles of TDA secretion and biofilm formation in the probiotic activity of S4Sm. RESULTS: Mutations in clpX (ATP-dependent ATPase) and exoP (an exopolysaccharide biosynthesis gene) were created by insertional mutagenesis using homologous recombination. Mutation of clpX resulted in the loss of TDA production, no decline in biofilm formation, and loss of the ability to inhibit the growth of Vibrio tubiashii and Vibrio anguillarum in co-colonization experiments. Mutation of exoP resulted in a ~60% decline in biofilm formation, no decline in TDA production, and delayed inhibitory activity towards Vibrio pathogens in co-colonization experiments. Both clpX and exoP mutants exhibited reduced ability to protect oyster larvae from death when challenged by Vibrio tubiashii. Complementation of the clpX and exoP mutations restored the wild type phenotype. We also found that pre-colonization of surfaces by S4Sm was critical for this bacterium to inhibit pathogen colonization and growth. CONCLUSIONS: Our observations demonstrate that probiotic activity by P. inhibens S4Sm involves contributions from both biofilm formation and the production of the antibiotic TDA. Further, probiotic activity also requires colonization of surfaces by S4Sm prior to the introduction of the pathogen.


Asunto(s)
Biopelículas , Ostreidae/microbiología , Probióticos/administración & dosificación , Rhodobacteraceae/fisiología , Tropolona/análogos & derivados , Vibriosis/veterinaria , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ostreidae/crecimiento & desarrollo , Probióticos/metabolismo , Rhodobacteraceae/genética , Tropolona/metabolismo , Vibrio/fisiología , Vibriosis/tratamiento farmacológico , Vibriosis/microbiología
5.
Int J Syst Evol Microbiol ; 66(11): 4791-4796, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27538951

RESUMEN

The Orientalis clade has a relevant significance for bivalve aquaculture since it includes the pathogens Vibrio bivalvicida, Vibrio tubiashii subsp. tubiashii and Vibrio tubiashii subsp. europaeus. However, the previous taxonomic description of the subspecies of V. tubiashii shows some incongruities that should be emended. In the genomic age, the comparison between genome assemblies is the key to clarify the taxonomic position of both subspecies. With this purpose, we have tested the ability of multilocus sequence analysis based on eight housekeeping gene sequences (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA and topA), different in silico genome-to-genome comparisons, chemotaxonomic features and phenotypic traits to reclassify the subspecies V. tubiashii subsp. europaeus within the Orientalis clade. This polyphasic approach clearly demonstrated that this subspecies is phylogenetically and phenotypically distinct from V. tubiashii and should be elevated to the rank of species as Vibrio europaeus sp. nov. This reclassification allows us to update the Orientalis clade (V. bivalvicida,V. brasiliensis, V. crosai, V. hepatarius, V. orientalis, V. sinaloensis, V. tubiashii and V. europaeus sp. nov.) and reconstruct a better phylogeny of the genus Vibrio. An emended description of V. tubiashii is provided. Finally, the proposed novel species is represented by emergent bivalve pathogens [type strain PP-638T (=CECT 8136T=DSM 27349T), PP2-843 and 07/118 T2] responsible for high mortalities in Spanish and French hatcheries.


Asunto(s)
Bivalvos/microbiología , Filogenia , Vibrio/clasificación , Animales , Acuicultura , Técnicas de Tipificación Bacteriana , ADN Bacteriano/genética , Genes Bacterianos , Larva , Tipificación de Secuencias Multilocus , Análisis de Secuencia de ADN , Vibrio/genética
6.
Fish Shellfish Immunol ; 53: 13-23, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27033806

RESUMEN

Comparative genomics research in non-model species has highlighted how invertebrate hosts possess complex diversified repertoires of immune molecules. The levels of diversification in particular immune gene families appear to differ between invertebrate lineages and even between species within lineages, reflecting differences not only in evolutionary histories, but also in life histories, environmental niches, and pathogen exposures. The goal of this research was to identify immune-related gene families experiencing high levels of diversification in eastern oysters, Crassostrea virginica. Families containing 1) transcripts differentially expressed in eastern oysters in response to bacterial challenge and 2) a larger number of transcripts compared to other species included those coding for the C1q and C-type lectin domain containing proteins (C1qDC and CTLDC), GTPase of the immune-associated proteins (GIMAP), scavenger receptors (SR), fibrinogen-C domain containing proteins (also known as FREPs), dopamine beta-hydrolase (DBH), interferon-inducible 44 (IFI44), serine protease inhibitors, apextrin, and dermatopontin. Phylogenetic analysis of two of the families significantly expanded in bivalves, IFI44 and GIMAP, showed a patchy distribution within both protostomes and deuterostomes, suggesting multiple independent losses and lineage-specific expansions. Increased availability of genomic information for a broader range of non-model species broadly distributed through vertebrate and invertebrate phyla will likely lead to improved knowledge on mechanisms of immune-gene diversification.


Asunto(s)
Crassostrea/genética , Crassostrea/inmunología , Familia de Multigenes , Animales , Análisis por Conglomerados , Crassostrea/microbiología , Inmunidad Innata/genética , Familia de Multigenes/genética , Familia de Multigenes/inmunología , Rhodobacteraceae/fisiología , Transcriptoma
7.
J Invertebr Pathol ; 133: 27-33, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26608554

RESUMEN

Vibriosis represents the main bottleneck for the larval production process in shellfish aquaculture. While the signs of this disease in bivalve larvae are well known, the infection process by pathogenic Vibrio spp. during episodes of vibriosis has not been elucidated. To investigate the infection process in bivalves, the pathogens of larvae as V. tubiashii subsp. europaensis, V. neptunius and V. bivalvicida were tagged with green fluorescent protein (GFP). Larvae of Manila clam (Ruditapes philippinarum) were inoculated with the GFP-labeled pathogens in different infection assays and monitored by microscopy. Manila clam larvae infected by distinct GFP-tagged Vibrio spp. in different challenges showed the same progression in the infection process, defining three infection stages. GFP-tagged Vibrio spp. were filtered by the larvae through the vellum and entered in the digestive system through the esophagus and stomach and colonized the digestive gland and particularly the intestine, where they proliferated during the first 2h of contact (Stage I), suggesting a chemotactic response. Then, GFP-tagged Vibrio spp. expanded rapidly to the surrounding organs in the body cavity from the dorsal to ventral region (Stage II; 6-8h), colonizing the larvae completely at the peak of infection (Stage III) (14-24h). Results demonstrated for the first time that the vibriosis is asymptomatic in Manila clam larvae during the early infection stages. Thus, the early colonization and the rapid proliferation of Vibrio pathogens within the body cavity supported the sudden and fatal effect of the vibriosis, since the larvae exhibited the first signs of disease when the infection process is advanced. As a first step in the elucidation of the potential mechanisms of bacterial pathogenesis in bivalve larvae the enzymatic activities of the extracellular products released from the wild type V. neptunius, V. tubiashii subsp. europaensis and V. bivalvicida were determined and their cytotoxicity was demonstrated in fish and homeothermic cell lines for the first time. That activity was lost after heat treatment.


Asunto(s)
Bivalvos/microbiología , Vibrio/fisiología , Animales , Susceptibilidad a Enfermedades , Proteínas Fluorescentes Verdes/análisis , Interacciones Huésped-Patógeno , Larva/microbiología , Vibrio/genética
8.
Fish Shellfish Immunol ; 46(1): 2-4, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25982405

RESUMEN

The eastern oyster, Crassostrea virginica, provides important ecological and economical services, making it the target of restoration projects and supporting a significant fishery/aquaculture industry with landings valued at more than $100 million in 2012 in the United States of America. Due to the impact of infectious diseases on wild, restored, and cultured populations, the eastern oyster has been the focus of studies on host-pathogen interactions and immunity, as well as the target of selective breeding efforts for disease resistant oyster lines. Despite these efforts, relatively little is known about the genetic basis of resistance to diseases or environmental stress, not only in eastern oyster, but also in other molluscan species of commercial interest worldwide. In order to develop tools and resources to assist in the elucidation of the genomic basis of traits of commercial, biological, and ecological interest in oysters, a team of genome and bioinformatics experts, in collaboration with the oyster research community, is sequencing, assembling, and annotating the first reference genome for the eastern oyster and producing an exhaustive transcriptome from a variety of oyster developmental stages and tissues in response to a diverse set of environmentally-relevant stimuli. These transcriptomes and reference genome for the eastern oyster, added to the already available genome and transcriptomes for the Pacific oyster (Crassostrea gigas) and other bivalve species, will be an essential resource for the discovery of candidate genes and markers associated with traits of commercial, biological, and ecologic importance in bivalve molluscs, including those related to host-pathogen interactions and immunity.


Asunto(s)
Crassostrea/genética , Crassostrea/inmunología , Genoma , Transcriptoma , Animales , Acuicultura , Genómica , Análisis de Secuencia de ADN
9.
J Invertebr Pathol ; 131: 137-54, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26021714

RESUMEN

Our understanding of disease processes and host-pathogen interactions in model species has benefited greatly from the application of medium and high-throughput genomic, metagenomic, epigenomic, transcriptomic, and proteomic analyses. The rate at which new, low-cost, high-throughput -omic technologies are being developed has also led to an expansion in the number of studies aimed at gaining a better understanding of disease processes in bivalves. This review provides a catalogue of the genetic and -omic tools available for bivalve species and examples of how -omics has contributed to the advancement of marine bivalve disease research, with a special focus in the areas of immunity, bivalve-pathogen interactions, mechanisms of disease resistance and pathogen virulence, and disease diagnosis. The analysis of bivalve genomes and transcriptomes has revealed that many immune and stress-related gene families are expanded in the bivalve taxa examined thus far. In addition, the analysis of proteomes confirms that responses to infection are influenced by epigenetic, post-transcriptional, and post-translational modifications. The few studies performed in bivalves show that epigenetic modifications are non-random, suggesting a role for epigenetics in regulating the interactions between bivalves and their environments. Despite the progress -omic tools have enabled in the field of marine bivalve disease processes, there is much more work to be done. To date, only three bivalve genomes have been sequenced completely, with assembly status at different levels of completion. Transcriptome datasets are relatively easy and inexpensive to generate, but their interpretation will benefit greatly from high quality genome assemblies and improved data analysis pipelines. Finally, metagenomic, epigenomic, proteomic, and metabolomic studies focused on bivalve disease processes are currently limited but their expansion should be facilitated as more transcriptome datasets and complete genome sequences become available for marine bivalve species.


Asunto(s)
Bivalvos/genética , Genómica , Interacciones Huésped-Patógeno/fisiología , Proteómica , Animales
10.
Fish Shellfish Immunol ; 41(1): 27-36, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24973516

RESUMEN

Several diseases have a significant impact on American oyster populations in the Atlantic coasts of North America. Knowledge about the responses of oysters to pathogenic challenge could help in identifying potential markers of disease resistance and biomarkers of the health status of an oyster population. A previous analysis of the transcriptome of resistant and susceptible American oysters in response to challenge with the bacterial pathogen Roseovarius crassostreae, as well as sequencing of suppression subtractive hybridization libraries from oysters challenged with the protozoan parasite Perkinsus marinus, provided a list of genes potentially involved in disease resistance or susceptibility. We investigated the patterns of inducible gene expression of several of these genes in response to experimental challenge with the oyster pathogens R. crassostreae, Vibrio tubiashii, and P. marinus. Oysters showing differential susceptibility to R. crassostreae demonstrated differential patterns of expression of genes coding for immune (serine protease inhibitor-1, SPI1) and stress-related (heat shock protein 70, HSP70; arginine kinase) proteins 30 days after challenge with this bacterial pathogen. Differential patterns of expression of immune (spi1, galectin and a matrix metalloproteinase) and stress-related (hsp70, histone H4, and arginine kinase) genes was observed in hemocytes from adult oysters challenged with P. marinus, but not with V. tubiashii. While levels of spi1 expression in hemocytes collected 8 and 21 days after P. marinus challenge were negatively correlated with parasite load in oysters tissues at the end of the challenge (62 days), levels of expression of hsp70 in hemocytes collected 1-day after challenge were positively correlated with oyster parasite load at 62 days. Our results confirm previous research on the role of serine protease inhibitor-1 in immunity and disease resistance in oysters. They also suggest that HSP70 and histone H4 could be used as a markers of health status or disease susceptibility in oysters.


Asunto(s)
Apicomplexa/inmunología , Crassostrea/inmunología , Vibrio/inmunología , Animales , Arginina Quinasa/genética , Arginina Quinasa/inmunología , Crassostrea/genética , Crassostrea/parasitología , Crassostrea/fisiología , Galectinas/genética , Galectinas/inmunología , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/inmunología , Histonas/genética , Histonas/inmunología , Modelos Logísticos , Metaloproteinasas de la Matriz/genética , Metaloproteinasas de la Matriz/inmunología , Análisis de Componente Principal , ARN/química , ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Inhibidores de Serina Proteinasa/genética , Inhibidores de Serina Proteinasa/inmunología , Estados Unidos
11.
Mol Ecol Resour ; 24(1): e13801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37186213

RESUMEN

Genome assembly can be challenging for species that are characterized by high amounts of polymorphism, heterozygosity, and large effective population sizes. High levels of heterozygosity can result in genome mis-assemblies and a larger than expected genome size due to the haplotig versions of a single locus being assembled as separate loci. Here, we describe the first chromosome-level genome for the eastern oyster, Crassostrea virginica. Publicly released and annotated in 2017, the assembly has a scaffold N50 of 54 mb and is over 97.3% complete based on BUSCO analysis. The genome assembly for the eastern oyster is a critical resource for foundational research into molluscan adaptation to a changing environment and for selective breeding for the aquaculture industry. Subsequent resequencing data suggested the presence of haplotigs in the original assembly, and we developed a post hoc method to break up chimeric contigs and mask haplotigs in published heterozygous genomes and evaluated improvements to the accuracy of downstream analysis. Masking haplotigs had a large impact on SNP discovery and estimates of nucleotide diversity and had more subtle and nuanced effects on estimates of heterozygosity, population structure analysis, and outlier detection. We show that haplotig masking can be a powerful tool for improving genomic inference, and we present an open, reproducible resource for the masking of haplotigs in any published genome.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Genómica/métodos , Análisis de Secuencia de ADN , Polimorfismo Genético , Tamaño del Genoma
12.
Microbiol Resour Announc ; 12(2): e0087322, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36656017

RESUMEN

Here, we announce the draft genome sequence of Vibrio parahaemolyticus strain PSU5579, isolated from a shrimp hatchery in southern Thailand during an outbreak of acute hepatopancreatic necrosis disease (AHPND). The genome contains 44 contigs with a sequence length of 5,229,426 bp, 4,861 coding sequences, and a G+C content of 45.3%.

13.
Mar Biotechnol (NY) ; 25(1): 174-191, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36622459

RESUMEN

The eastern oyster Crassostrea virginica is a major aquaculture species for the USA. The sustainable development of eastern oyster aquaculture depends upon the continued improvement of cultured stocks through advanced breeding technologies. The Eastern Oyster Breeding Consortium (EOBC) was formed to advance the genetics and breeding of the eastern oyster. To facilitate efficient genotyping needed for genomic studies and selection, the consortium developed two single-nucleotide polymorphism (SNP) arrays for the eastern oyster: one screening array with 566K SNPs and one breeders' array with 66K SNPs. The 566K screening array was developed based on whole-genome resequencing data from 292 oysters from Atlantic and Gulf of Mexico populations; it contains 566,262 SNPs including 47K from protein-coding genes with a marker conversion rate of 48.34%. The 66K array was developed using best-performing SNPs from the screening array, which contained 65,893 oyster SNPs including 22,984 genic markers with a calling rate of 99.34%, a concordance rate of 99.81%, and a much-improved marker conversion rate of 92.04%. Null alleles attributable to large indels were found in 13.1% of the SNPs, suggesting that copy number variation is pervasive. Both arrays provided easy identification and separation of selected stocks from wild progenitor populations. The arrays contain 31 mitochondrial SNPs that allowed unambiguous identification of Gulf mitochondrial genotypes in some Atlantic populations. The arrays also contain 756 probes from 13 oyster and human pathogens for possible detection. Our results show that marker conversion rate is low in high polymorphism species and that the two-step process of array development can greatly improve array performance. The two arrays will advance genomic research and accelerate genetic improvement of the eastern oyster by delineating genetic architecture of production traits and enabling genomic selection. The arrays also may be used to monitor pedigree and inbreeding, identify selected stocks and their introgression into wild populations, and assess the success of oyster restoration.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Variaciones en el Número de Copia de ADN , Genoma , Genómica , Genotipo , Polimorfismo de Nucleótido Simple
15.
Appl Environ Microbiol ; 78(8): 2996-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22307298

RESUMEN

Quantification of the abundance of Vibrio parahaemolyticus in water and oysters from Rhode Island showed the presence of environmental strains and low levels of potentially pathogenic strains when water temperatures were ≥18°C, with peak levels in late July to early August. A higher abundance of the trh gene than of the tdh gene was observed.


Asunto(s)
Ostreidae/microbiología , Vibrio parahaemolyticus/clasificación , Vibrio parahaemolyticus/aislamiento & purificación , Microbiología del Agua , Animales , Carga Bacteriana , Rhode Island , Estaciones del Año , Temperatura , Vibrio parahaemolyticus/patogenicidad
16.
Dis Aquat Organ ; 100(2): 149-58, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-23186702

RESUMEN

The emergence of epizootic shell disease in American lobsters Homarus americanus in the southern New England area, USA, has presented many new challenges to understanding the interface between disease and fisheries management. This paper examines past knowledge of shell disease, supplements this with the new knowledge generated through a special New England Lobster Shell Disease Initiative completed in 2011, and suggests how epidemiological tools can be used to elucidate the interactions between fisheries management and disease.


Asunto(s)
Enfermedades de los Animales , Nephropidae , Animales , Océano Atlántico , Monitoreo del Ambiente , New England , Factores de Tiempo
17.
Dis Aquat Organ ; 102(2): 107-18, 2012 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-23269385

RESUMEN

The continuing challenges to the management of both wild and cultured eastern oyster Crassostrea virginica populations resulting from protozoan parasites has stimulated interest in the development of molecular assays for their detection and quantification. For Haplosporidium nelsoni, the causative agent of multinucleated sphere unknown (MSX) disease, diagnostic evaluations depend extensively on traditional but laborious histological approaches and more recently on rapid and sensitive (but not quantitative) end-point polymerase chain reaction (PCR) assays. Here, we describe the development and application of a quantitative PCR (qPCR) assay for H. nelsoni using an Applied Biosystems TaqMan® assay designed with minor groove binder (MGB) probes. The assay was highly sensitive, detecting as few as 20 copies of cloned target DNA. Histologically evaluated parasite density was significantly correlated with the quantification cycle (Cq), regardless of whether quantification was categorical (r2 = 0.696, p < 0.0001) or quantitative (r2 = 0.797, p < 0.0001). Application in field studies conducted in North Carolina, USA (7 locations), revealed widespread occurrence of the parasite with moderate to high intensities noted in some locations. In Rhode Island, USA, application of the assay on oysters from 2 locations resulted in no positives.


Asunto(s)
Crassostrea/parasitología , Haplosporidios/clasificación , Haplosporidios/aislamiento & purificación , Reacción en Cadena de la Polimerasa/métodos , Animales , Interacciones Huésped-Parásitos , North Carolina , Rhode Island , Sensibilidad y Especificidad
18.
Dev Comp Immunol ; 129: 104339, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34998862

RESUMEN

The protozoan parasite Perkinsus marinus causes Dermo disease in eastern oysters, Crassostrea virginica, and can suppress apoptosis of infected hemocytes using incompletely understood mechanisms. This study challenged hemocytes in vitro with P. marinus for 1 h in the presence or absence of caspase inhibitor Z-VAD-FMK or Inhibitor of Apoptosis protein (IAP) inhibitor GDC-0152. Hemocytes exposure to P. marinus significantly reduced granulocyte apoptosis, and pre-incubation with Z-VAD-FMK did not affect P. marinus-induced apoptosis suppression. Hemocyte pre-incubation with GDC-0152 prior to P. marinus challenge further reduced apoptosis of granulocytes with engulfed parasite, but not mitochondrial permeabilization. This suggests P. marinus-induced apoptosis suppression may be caspase-independent, affect an IAP-involved pathway, and occur downstream of mitochondrial permeabilization. P. marinus challenge stimulated hemocyte differential expression of oxidation-reduction, TNFR, and NF-kB pathways. WGCNA analysis of P. marinus expression in response to hemocyte exposure revealed correlated protease, kinase, and hydrolase expression that could contribute to P. marinus-induced apoptosis suppression.


Asunto(s)
Crassostrea/parasitología , Clorometilcetonas de Aminoácidos , Animales , Apicomplexa , Apoptosis , Caspasas , Hemocitos/parasitología , Interacciones Huésped-Parásitos , Proteínas Inhibidoras de la Apoptosis , FN-kappa B , Oxidación-Reducción , Estrés Oxidativo
19.
Biol Bull ; 243(1): 50-75, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36108034

RESUMEN

AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.


Asunto(s)
Ecosistema , Estrellas de Mar , Animales , Biología
20.
Fish Shellfish Immunol ; 30(1): 94-101, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20883794

RESUMEN

Several histones and histone-derived peptides have been shown to have antimicrobial activity and a potential role in innate immune defenses. A histone H4 sequence was identified in a subtractive suppression library containing genes upregulated in American cupped oysters, Crassostrea virginica, in response to challenge with the protozoan parasite Perkinsus marinus. Oyster histone H4 protein levels significantly increased in hemocyte lysates and cell free hemolymph of oysters experimentally challenged with P. marinus. The complete histone H4 coding sequence of C. virginica was cloned into a Saccharomyces cerevisiae yeast expression system and recombinant expression was confirmed using SDS-PAGE analysis and western blot. Delivery of yeast cells expressing recombinant oyster histone H4 into the gut of brine shrimp, Artemia salinas, challenged with a streptomycin resistant strain of Vibrio anguillarum resulted in a significant and dose-dependent decrease in the load of V. anguillarum. Purified recombinant histone H4 showed antimicrobial activity against V. anguillarum and Escherichia coli at micromolar concentrations, but did not affect the viability of P. marinus in culture. These results support the role of histone H4 in the defense of oysters against bacterial infection and validate the use of a novel oyster antimicrobial H4 in a yeast feed-based delivery system for the treatment of bacterial infections in aquaculture applications.


Asunto(s)
Antibacterianos/farmacología , Histonas/metabolismo , Histonas/farmacología , Ostreidae/metabolismo , Regulación hacia Arriba , Secuencia de Aminoácidos , Animales , Artemia , Secuencia de Bases , Datos de Secuencia Molecular , Ostreidae/genética , Saccharomyces cerevisiae/metabolismo , Vibrio/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda