Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Proc Biol Sci ; 291(2015): 20231753, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38228504

RESUMEN

Bodily self-awareness relies on a constant integration of visual, tactile, proprioceptive, and motor signals. In the 'rubber hand illusion' (RHI), conflicting visuo-tactile stimuli lead to changes in self-awareness. It remains unclear whether other, somatic signals could compensate for the alterations in self-awareness caused by visual information about the body. Here, we used the RHI in combination with robot-mediated self-touch to systematically investigate the role of tactile, proprioceptive and motor signals in maintaining and restoring bodily self-awareness. Participants moved the handle of a leader robot with their right hand and simultaneously received corresponding tactile feedback on their left hand from a follower robot. This self-touch stimulation was performed either before or after the induction of a classical RHI. Across three experiments, active self-touch delivered after-but not before-the RHI, significantly reduced the proprioceptive drift caused by RHI, supporting a restorative role of active self-touch on bodily self-awareness. The effect was not present during involuntary self-touch. Unimodal control conditions confirmed that both tactile and motor components of self-touch were necessary to restore bodily self-awareness. We hypothesize that active self-touch transiently boosts the precision of proprioceptive representation of the touched body part, thus counteracting the visual capture effects that underlie the RHI.


Asunto(s)
Ilusiones , Percepción del Tacto , Humanos , Tacto/fisiología , Ilusiones/fisiología , Percepción Visual/fisiología , Percepción del Tacto/fisiología , Mano/fisiología , Propiocepción/fisiología , Imagen Corporal
2.
J Neurophysiol ; 128(2): 418-433, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35822710

RESUMEN

Interactions with objects involve simultaneous contact with multiple, not necessarily adjacent, skin regions. Although advances have been made in understanding the capacity to selectively attend to a single tactile element among distracting stimulations, here, we examine how multiple stimulus elements are explicitly integrated into an overall tactile percept. Across four experiments, participants averaged the direction of two simultaneous tactile motion trajectories of varying discrepancy delivered to different fingerpads. Averaging performance differed between within- and between-hands conditions in terms of sensitivity and precision but was unaffected by somatotopic proximity between stimulated fingers. First, precision was greater in between-hand compared with within-hand conditions, demonstrating a bimanual perceptual advantage in multi-touch integration. Second, sensitivity to the average direction was influenced by the discrepancy between individual motion signals, but only for within-hand conditions. Overall, our experiments identify key factors that influence perception of simultaneous tactile events. In particular, we show that multi-touch integration is constrained by hand-specific rather than digit-specific mechanisms.NEW & NOTEWORTHY Object manipulation involves encoding spatially and temporally extended tactile signals, yet most studies emphasize minimal units of tactile perception (e.g., selectivity). Instead, we asked participants to average two tactile motion trajectories delivered simultaneously to two different fingerpads. Our results show strong integration between multiple tactile inputs, but subject to limitations for inputs delivered within a hand. As such, the present study establishes a paradigm for studying unified experience of touch despite distinct stimulus elements.


Asunto(s)
Percepción de Movimiento , Percepción del Tacto , Dedos , Mano , Humanos , Movimiento (Física) , Tacto
3.
J Neurophysiol ; 127(1): 16-26, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34879215

RESUMEN

Humans continuously adapt their movement to a novel environment by recalibrating their sensorimotor system. Recent evidence, however, shows that explicit planning to compensate for external changes, i.e., a cognitive strategy, can also aid performance. If such a strategy is planned in external space, it should improve performance in an effector-independent manner. We tested this hypothesis by examining whether promoting a cognitive strategy during a visual-force adaptation task performed in one hand can facilitate learning for the opposite hand. Participants rapidly adjusted the height of visual bar on screen to a target level by isometrically exerting force on a handle using their right hand. Visuomotor gain increased during the task and participants learned the increased gain. Visual feedback was continuously provided for one group, whereas for another group only the endpoint of the force trajectory was presented. The latter has been reported to promote cognitive strategy use. We found that endpoint feedback produced stronger intermanual transfer of learning and slower response times than continuous feedback. In a separate experiment, we found evidence that aftereffects are reduced when only endpoint feedback is provided, a finding that has been consistently observed when cognitive strategies are used. The results suggest that intermanual transfer can be facilitated by a cognitive strategy. This indicates that the behavioral observation of intermanual transfer can be achieved either by forming an effector-independent motor representation or by sharing an effector-independent cognitive strategy between the hands.NEW & NOTEWORTHY The causes and consequences of cognitive strategy use are poorly understood. We tested whether a visuomotor task learned in a manner that may promote cognitive strategy use causes greater generalization across effectors. Visual feedback was manipulated to promote cognitive strategy use. Learning consistent with cognitive strategy use for one hand transferred to the unlearned hand. Our result suggests that intermanual transfer can result from a common cognitive strategy used to control both hands.


Asunto(s)
Adaptación Fisiológica/fisiología , Retroalimentación Sensorial/fisiología , Mano/fisiología , Desempeño Psicomotor/fisiología , Pensamiento/fisiología , Transferencia de Experiencia en Psicología/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
4.
Proc Biol Sci ; 289(1988): 20221977, 2022 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475437

RESUMEN

During the haptic exploration of a planar surface, slight resistances against the hand's movement are illusorily perceived as asperities (bumps) in the surface. If the surface being touched is one's own skin, an actual bump would also produce increased tactile pressure from the moving finger onto the skin. We investigated how kinaesthetic and tactile signals combine to produce haptic perceptions during self-touch. Participants performed two successive movements with the right hand. A haptic force-control robot applied resistances to both movements, and participants judged which movement was felt to contain the larger bump. An additional robot delivered simultaneous but task-irrelevant tactile stroking to the left forearm. These strokes contained either increased or decreased tactile pressure synchronized with the resistance-induced illusory bump encountered by the right hand. We found that the size of bumps perceived by the right hand was enhanced by an increase in left tactile pressure, but also by a decrease. Tactile event detection was thus transferred interhemispherically, but the sign of the tactile information was not respected. Randomizing (rather than blocking) the presentation order of left tactile stimuli abolished these interhemispheric enhancement effects. Thus, interhemispheric transfer during bimanual self-touch requires a stable model of temporally synchronized events, but does not require geometric consistency between hemispheric information, nor between tactile and kinaesthetic representations of a single common object.


Asunto(s)
Comunicación , Autoimagen , Humanos
5.
J Neurosci ; 40(31): 6035-6048, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32611708

RESUMEN

Control of the body requires inhibiting complex actions, involving contracting and relaxing muscles. However, little is known of how voluntary commands to relax a muscle are cancelled. Action inhibition causes both suppression of muscle activity and the transient excitation of antagonist muscles, the latter being termed active breaking. We hypothesized that active breaking is present when stopping muscle relaxations. Stop signal experiments were used to compare the mechanisms of active breaking for muscle relaxations and contractions in male and female human participants. In experiments 1 and 2, go signals were presented that required participants to contract or relax their biceps or triceps muscle. Infrequent Stop signals occurred after fixed delays (0-500 ms), requiring that participants cancelled go commands. In experiment 3, participants increased (contract) or decreased (relax) an existing isometric finger abduction depending on the go signal, and cancelled these force changes whenever Stop signals occurred (dynamically adjusted delay). We found that muscle relaxations were stopped rapidly, met predictions of existing race models, and had Stop signal reaction times that correlated with those observed during the stopping of muscle contractions, suggesting shared control mechanisms. However, stopped relaxations were preceded by transient increases in electromyography (EMG), while stopped contractions were preceded by decreases in EMG, suggesting a later divergence of control. Muscle state-specific active breaking occurred simultaneously across muscles, consistent with a central origin. Our results indicate that the later stages of action inhibition involve separate excitatory and inhibitory pathways, which act automatically to cancel complex body movements.SIGNIFICANCE STATEMENT The mechanisms of how muscle relaxations are cancelled are poorly understood. We showed in three experiments involving multiple effectors that stopping muscle relaxations involves transient bursts of EMG activity, which resemble cocontraction and have onsets that correlate with Stop signal reaction time. Comparison with the stopping of matched muscle contractions showed that active breaking was muscle state specific, being positive for relaxations and negative for contractions. The two processes were also observed to co-occur in agonist-antagonist pairs, suggesting separate pathways. The rapid, automatic activation of both pathways may explain how complex actions can be stopped at any stage of their execution.


Asunto(s)
Contracción Muscular/fisiología , Relajación Muscular/fisiología , Músculo Esquelético/fisiología , Adulto , Electromiografía , Femenino , Dedos/fisiología , Músculos Isquiosurales/fisiología , Humanos , Contracción Isométrica , Masculino , Movimiento/fisiología , Tiempo de Reacción
6.
J Neurophysiol ; 126(3): 816-826, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34320845

RESUMEN

When reaching for an object with the hand, the gaze is usually directed at the target. In a laboratory setting, fixation is strongly maintained at the reach target until the reaching is completed, a phenomenon known as "gaze anchoring." While conventional accounts of such tight eye-hand coordination have often emphasized the internal synergetic linkage between both motor systems, more recent optimal control theories regard motor coordination as the adaptive solution to task requirements. We here investigated to what degree gaze control during reaching is modulated by task demands. We adopted a gaze-anchoring paradigm in which participants had to reach for a target location. During the reach, they additionally had to make a saccadic eye movement to a salient visual cue presented at locations other than the target. We manipulated the task demands by independently changing reward contingencies for saccade reaction time (RT) and reaching accuracy. On average, both saccade RTs and reach error varied systematically with reward condition, with reach accuracy improving when the saccade was delayed. The distribution of the saccade RTs showed two types of eye movements: fast saccades with short RTs, and voluntary saccade with longer RTs. Increased reward for high reach accuracy reduced the probability of fast saccades but left their latency unchanged. The results suggest that gaze anchoring acts through a suppression of fast saccades, a mechanism that can be adaptively adjusted to the current task demands.NEW & NOTEWORTHY During visually guided reaching, our eyes usually fixate the target and saccades elsewhere are delayed ("gaze anchoring"). We here show that the degree of gaze anchoring is flexibly modulated by the reward contingencies of saccade latency and reach accuracy. Reach error became larger when saccades occurred earlier. These results suggest that early saccades are costly for reaching and the brain modulates inhibitory online coordination from the hand to the eye system depending on task requirements.


Asunto(s)
Mano/fisiología , Movimiento , Desempeño Psicomotor , Movimientos Sacádicos , Adulto , Femenino , Humanos , Masculino , Recompensa
7.
Exp Brain Res ; 239(4): 1047-1059, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33528597

RESUMEN

Previous studies (Haswell et al. in Nat Neurosci 12:970-972, 2009; Marko et al. in Brain J Neurol 138:784-797, 2015) reported that people with autism rely less on vision for learning to reach in a force field. This suggested a possibility that they have difficulties in extracting force information from visual motion signals, a process called inverse dynamics computation. Our recent study (Takamuku et al. in J Int Soc Autism Res 11:1062-1075, 2018) examined the ability of inverse computation with two perceptual tasks and found similar performances in typical and autistic adults. However, this tested the computation only in the context of sensory perception while it was possible that the suspected disability is specific to the motor domain. Here, in order to address the concern, we tested the use of inverse dynamics computation in the context of motor control by measuring changes in grip timing caused by seeing/not seeing a controlled object. The motion of the object was informative of its inertial force and typical participants improved their grip timing based on the visual feedback. Our interest was on whether the autism participants show the same improvement. While some autism participants showed atypical hand slowing when seeing the controlled object, we found no evidence of abnormalities in the inverse computation in our grip timing task or in a replication of the perceptual task. This suggests that the ability of inverse dynamics computation is preserved not only for sensory perception but also for motor control in adults with autism.


Asunto(s)
Trastorno Autístico , Adulto , Retroalimentación Sensorial , Mano , Fuerza de la Mano , Humanos , Movimiento (Física) , Desempeño Psicomotor
8.
Exp Brain Res ; 235(7): 1953-1997, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28374088

RESUMEN

The Kohnstamm phenomenon refers to the observation that if one pushes the arm hard outwards against a fixed surface for about 30 s, and then moves away from the surface and relaxes, an involuntary movement of the arm occurs, accompanied by a feeling of lightness. Central, peripheral and hybrid theories of the Kohnstamm phenomenon have been advanced. Afferent signals may be irrelevant if purely central theories hold. Alternatively, according to peripheral accounts, altered afferent signalling actually drives the involuntary movement. Hybrid theories suggest afferent signals control a centrally-programmed aftercontraction via negative position feedback control or positive force feedback control. The Kohnstamm phenomenon has provided an important scientific method for comparing voluntary with involuntary movement, both with respect to subjective experience, and for investigating whether involuntary movements can be brought under voluntary control. A full review of the literature reveals that a hybrid model best explains the Kohnstamm phenomenon. On this model, a central adaptation interacts with afferent signals at multiple levels of the motor hierarchy. The model assumes that a Kohnstamm generator sends output via the same pathways as voluntary movement, yet the resulting movement feels involuntary due to a lack of an efference copy to cancel against sensory inflow. This organisation suggests the Kohnstamm phenomenon could represent an amplification of neuromotor processes normally involved in automatic postural maintenance. Future work should determine which afferent signals contribute to the Kohnstamm phenomenon, the location of the Kohnstamm generator, and the principle of feedback control operating during the aftercontraction.


Asunto(s)
Brazo/fisiología , Discinesias , Postura/fisiología , Adaptación Fisiológica/fisiología , Historia del Siglo XIX , Humanos , Inhibición Psicológica
9.
Eur J Neurosci ; 43(1): 120-30, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26540267

RESUMEN

Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks.


Asunto(s)
Modelos Neurológicos , Destreza Motora , Desempeño Psicomotor , Adulto , Retroalimentación Sensorial , Femenino , Dedos , Humanos , Masculino , Adulto Joven
10.
J Neurophysiol ; 113(4): 1206-16, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25429112

RESUMEN

To capture objects by hand, online motor corrections are required to compensate for self-body movements. Recent studies have shown that background visual motion, usually caused by body movement, plays a significant role in such online corrections. Visual motion applied during a reaching movement induces a rapid and automatic manual following response (MFR) in the direction of the visual motion. Importantly, the MFR amplitude is modulated by the gaze direction relative to the reach target location (i.e., foveal or peripheral reaching). That is, the brain specifies the adequate visuomotor gain for an online controller based on gaze-reach coordination. However, the time or state point at which the brain specifies this visuomotor gain remains unclear. More specifically, does the gain change occur even during the execution of reaching? In the present study, we measured MFR amplitudes during a task in which the participant performed a saccadic eye movement that altered the gaze-reach coordination during reaching. The results indicate that the MFR amplitude immediately after the saccade termination changed according to the new gaze-reach coordination, suggesting a flexible online updating of the MFR gain during reaching. An additional experiment showed that this gain updating mostly started before the saccade terminated. Therefore, the MFR gain updating process would be triggered by an ocular command related to saccade planning or execution based on forthcoming changes in the gaze-reach coordination. Our findings suggest that the brain flexibly updates the visuomotor gain for an online controller even during reaching movements based on continuous monitoring of the gaze-reach coordination.


Asunto(s)
Brazo/fisiología , Desempeño Psicomotor , Movimientos Sacádicos , Adulto , Brazo/inervación , Encéfalo/fisiología , Femenino , Humanos , Masculino , Tiempo de Reacción
11.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26156766

RESUMEN

How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions.


Asunto(s)
Retroalimentación Sensorial , Aprendizaje , Percepción de Movimiento , Adulto , Señales (Psicología) , Humanos , Masculino , Factores de Tiempo
12.
Exp Brain Res ; 233(4): 1273-88, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25618007

RESUMEN

Proprioception can be defined as the sense for body movement and position. While most sensory information can be successfully integrated across hemispheres, little is known about the bilateral integration of proprioceptive information. In two behavioural experiments, we investigated whether estimates of the position of one hand are influenced by simultaneous proprioceptive information from the other hand. We further investigated whether such putative bimanual proprioceptive integration would differ between expert dancers and non-dancer controls. Either one hand or both hands were passively moved to novel positions, and participants indicated the perceived location of the index finger tip of the designated target hand, by orienting a visible laser beam mounted on a cap. Synchronized bimanual movements compared to unimanual movements significantly improved proprioceptive position sense. In particular, we found a bias reduction to perceive the target hand's index finger tip as shifted away from the midline in the bimanual condition, compared to the unimanual condition. Expert dancers, in contrast, did not show this change in proprioceptive position sense after bimanual movements. We suggest that bimanual movements may improve proprioception due to interhemispheric integration in controls, but not in expert dancers.


Asunto(s)
Lateralidad Funcional/fisiología , Mano/fisiología , Movimiento/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Análisis de Varianza , Sesgo , Baile/fisiología , Ambiente , Femenino , Humanos , Masculino , Estimulación Física , Competencia Profesional , Hombro/inervación , Vibración , Adulto Joven
13.
J Neurosci ; 33(42): 16502-9, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133255

RESUMEN

Information pertaining to visual motion is used in the brain not only for conscious perception but also for various kinds of motor controls. In contrast to the increasing amount of evidence supporting the dissociation of visual processing for action versus perception, it is less clear whether the analysis of visual input is shared for characterizing various motor outputs, which require different kinds of interactions with environments. Here we show that, in human visuomotor control, motion analysis for quick hand control is distinct from that for quick eye control in terms of spatiotemporal analysis and spatial integration. The amplitudes of implicit and quick hand and eye responses induced by visual motion stimuli differently varied with stimulus size and pattern smoothness (e.g., spatial frequency). Surprisingly, the hand response did not decrease even when the visual motion with a coarse pattern was mostly occluded over the visual center, whereas the eye response markedly decreased. Since these contrasts cannot be ascribed to any difference in motor dynamics, they clearly indicate different spatial integration of visual motion for the individual motor systems. Going against the overly unified hierarchical view of visual analysis, our data suggest that visual motion analyses are separately tailored from early levels to individual motor modalities. Namely, the hand and eyes see the external world differently.


Asunto(s)
Mano/fisiología , Percepción de Movimiento/fisiología , Desempeño Psicomotor/fisiología , Percepción Visual/fisiología , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Orientación/fisiología , Estimulación Luminosa , Tiempo de Reacción/fisiología , Percepción Espacial/fisiología
14.
Front Hum Neurosci ; 18: 1336629, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419960

RESUMEN

Various functional modulations of the stretch reflex help to stabilize actions, but the computational mechanism behind its context-dependent tuning remains unclear. While many studies have demonstrated that motor contexts associated with the task goal cause functional modulation of the stretch reflex of upper limbs, it is not well understood how visual contexts independent of the task requirements affect the stretch reflex. To explore this issue, we conducted two experiments testing 20 healthy human participants (age range 20-45, average 31.3 ± 9.0), in which visual contexts were manipulated in a visually guided reaching task. During wrist flexion movements toward a visual target, a mechanical load was applied to the wrist joint to evoke stretch reflex of wrist flexor muscle (flexor carpi radialis). The first experiment (n = 10) examined the effect of altering the visuomotor transformation on the stretch reflex that was evaluated with surface electromyogram. We found that the amplitude of the stretch reflex decreased (p = 0.024) when a rotational transformation of 90° was introduced between the hand movement and the visual cursor, whereas the amplitude did not significantly change (p = 0.26) when the rotational transformation was accompanied by a head rotation so that the configuration of visual feedback was maintained in visual coordinates. The results suggest that the stretch reflex was regulated depending on whether the visuomotor mapping had already been acquired or not. In the second experiment (n = 10), we examined how uncertainty in the visual target or hand cursor affects the stretch reflex by removing these visual stimuli. We found that the reflex amplitude was reduced by the disappearance of the hand cursor (p = 0.039), but was not affected by removal of the visual target (p = 0.27), suggesting that the visual state of the body and target contribute differently to the reflex tuning. These findings support the idea that visual updating of the body state is crucial for regulation of quick motor control driven by proprioceptive signals.

15.
Cell Rep ; 43(3): 113884, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38458194

RESUMEN

Primate hands house an array of mechanoreceptors and proprioceptors, which are essential for tactile and kinematic information crucial for daily motor action. While the regulation of these somatosensory signals is essential for hand movements, the specific central nervous system (CNS) location and mechanism remain unclear. Our study demonstrates the attenuation of somatosensory signals in the cuneate nucleus during voluntary movement, suggesting significant modulation at this initial relay station in the CNS. The attenuation is comparable to the cerebral cortex but more pronounced than in the spinal cord, indicating the cuneate nuclei's role in somatosensory perception modulation during movement. Moreover, our findings suggest that the descending motor tract may regulate somatosensory transmission in the cuneate nucleus, enhancing relevant signals and suppressing unnecessary ones for the regulation of movement. This process of recurrent somatosensory modulation between cortical and subcortical areas could be a basic mechanism for modulating somatosensory signals to achieve active perception.


Asunto(s)
Mano , Bulbo Raquídeo , Animales , Bulbo Raquídeo/fisiología , Médula Espinal/fisiología , Tacto , Primates , Corteza Somatosensorial/fisiología , Movimiento/fisiología
16.
Neural Netw ; 162: 516-530, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36990001

RESUMEN

Visual motion analysis is crucial for humans to detect external moving objects and self-motion which are informative for planning and executing actions for various interactions with environments. Here we show that the image motion analysis trained to decode the self-motion during human natural movements by a convolutional neural network exhibits similar specificities with the reflexive ocular and manual responses induced by a large-field visual motion, in terms of stimulus spatiotemporal frequency tuning. The spatiotemporal frequency tuning of the decoder peaked at high-temporal and low-spatial frequencies, as observed in the reflexive ocular and manual responses, but differed significantly from the frequency power of the visual image itself and the density distribution of self-motion. Further, artificial manipulations of the learning data sets predicted great changes in the specificity of the spatiotemporal tuning. Interestingly, despite similar spatiotemporal frequency tunings in the vertical-axis rotational direction and in the transversal direction to full-field visual stimuli, the tunings for center-masked stimuli were different between those directions, and the specificity difference is qualitatively similar to the discrepancy between ocular and manual responses, respectively. In addition, the representational analysis demonstrated that head-axis rotation was decoded by relatively simple spatial accumulation over the visual field, while the transversal motion was decoded by more complex spatial interaction of visual information. These synthetic model examinations support the idea that visual motion analyses eliciting the reflexive motor responses, which are critical in interacting with the external world, are acquired for decoding self-motion.


Asunto(s)
Percepción de Movimiento , Humanos , Percepción de Movimiento/fisiología , Movimiento/fisiología , Rotación , Estimulación Luminosa/métodos
17.
iScience ; 26(1): 105751, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36590158

RESUMEN

Hierarchical brain-information-processing schemes have frequently assumed that the flexible but slow voluntary action modulates a direct sensorimotor process that can quickly generate a reaction in dynamical interaction. Here we show that the quick visuomotor process for manual movement is modulated by postural and visual instability contexts that are related but remote and prior states to manual movements. A preceding unstable postural context significantly enhanced the reflexive manual response induced by a large-field visual motion during hand reaching while the response was evidently weakened by imposing a preceding random-visual-motion context. These modulations are successfully explained by the Bayesian optimal formulation in which the manual response elicited by visual motion is ascribed to the compensatory response to the estimated self-motion affected by the preceding contextual situations. Our findings suggest an implicit and functional mechanism that links the variability and uncertainty of remote states to the quick sensorimotor transformation.

18.
J Neurophysiol ; 107(6): 1576-85, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22190631

RESUMEN

Vision and proprioception contribute to generating hand movement. If a conflict between the visual and proprioceptive feedback of hand position is given, reaching movement is disturbed initially but recovers after training. Although previous studies have predominantly investigated the adaptive change in the motor output, it is unclear whether the contributions of visual and proprioceptive feedback controls to the reaching movement are modified by visuomotor adaptation. To investigate this, we focused on the change in proprioceptive feedback control associated with visuomotor adaptation. After the adaptation to gradually introduce visuomotor rotation, the hand reached the shifted position of the visual target to move the cursor to the visual target correctly. When the cursor feedback was occasionally eliminated (probe trial), the end point of the hand movement was biased in the visual-target direction, while the movement was initiated in the adapted direction, suggesting the incomplete adaptation of proprioceptive feedback control. Moreover, after the learning of uncertain visuomotor rotation, in which the rotation angle was randomly fluctuated on a trial-by-trial basis, the end-point bias in the probe trial increased, but the initial movement direction was not affected, suggesting a reduction in the adaptation level of proprioceptive feedback control. These results suggest that the change in the relative contribution of visual and proprioceptive feedback controls to the reaching movement in response to the visuomotor-map uncertainty is involved in visuomotor adaptation, whereas feedforward control might adapt in a manner different from that of the feedback control.


Asunto(s)
Adaptación Fisiológica/fisiología , Retroalimentación Sensorial/fisiología , Actividad Motora/fisiología , Propiocepción/fisiología , Desempeño Psicomotor/fisiología , Visión Ocular/fisiología , Adulto , Femenino , Humanos , Masculino , Orientación/fisiología , Estimulación Luminosa , Tiempo de Reacción/fisiología , Rotación , Incertidumbre , Percepción Visual/fisiología
19.
Eur J Neurosci ; 36(12): 3709-17, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23009362

RESUMEN

Muscle spindles provide information about the position and movement of our bodies. One method for investigating spindle signals is tendon vibration. Vibration of flexor tendons can produce illusions of extension, and vibration of extensor tendons can produce illusions of flexion. Here we estimate the temporal resolution and persistence of these illusions. In Experiments 1 and 2, sequences of alternating vibration of wrist flexor and extensor tendons produced position illusions that varied with alternation period. When vibrations alternated at 1 Hz or slower, perceived position at the end of the sequence depended on the last vibration. When vibrations alternated every 0.3 s, perceived position was independent of the last vibration. Experiment 2 verified and extended these results using more trials and concurrent electromyographic recording. Although tendon vibrations sometimes induce reflexive muscle activity, we found no evidence that such activity contributed to these effects. Experiment 3 investigated how long position sense is retained when not updated by current information from spindles. Our first experiments suggested that vibrating antagonistic tendons simultaneously could produce conflicting inputs, leaving position sense reliant on memory of position prior to vibration onset. We compared variability in position sense after different durations of such double vibration. After 12 s of double vibration, variability across trials exceeded levels predicted from vibrations of flexor or extensor tendons alone. This suggests that position sense memory had decayed too much to substitute for the current conflicting sensory information. Together, our results provide novel, quantitative insight into the temporal properties of tendon vibration illusions.


Asunto(s)
Ilusiones/fisiología , Tendones/fisiología , Vibración , Adulto , Electromiografía , Femenino , Humanos , Masculino , Memoria , Husos Musculares/fisiología , Factores de Tiempo , Muñeca/fisiología
20.
Curr Biol ; 32(12): 2747-2753.e6, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35580606

RESUMEN

Numerous studies have proposed that our adaptive motor behaviors depend on learning a map between sensory information and limb movement,1-3 called an "internal model." From this perspective, how the brain represents internal models is a critical issue in motor learning, especially regarding their association with spatial frames processed in motor planning.4,5 Extensive experimental evidence suggests that during planning stages for visually guided hand reaching, the brain transforms visual target representations in gaze-centered coordinates to motor commands in limb coordinates, via hand-target vectors in workspace coordinates.6-9 While numerous studies have intensively investigated whether the learning for reaching occurs in workspace or limb coordinates,10-20 the association of the learning with gaze coordinates still remains untested.21 Given the critical role of gaze-related spatial coding in reaching planning,22-26 the potential role of gaze states for learning is worth examining. Here, we show that motor memories for reaching are separately learned according to target location in gaze coordinates. Specifically, two opposing visuomotor rotations, which normally interfere with each other, can be simultaneously learned when each is associated with reaching to a foveal target and peripheral one. We also show that this gaze-dependent learning occurs in force-field adaptation. Furthermore, generalization of gaze-coupled reach adaptation is limited across central, right, and left visual fields. These results suggest that gaze states are available in the formation and recall of multiple internal models for reaching. Our findings provide novel evidence that a gaze-dependent spatial representation can provide a spatial coordinate framework for context-dependent motor learning.


Asunto(s)
Mano , Desempeño Psicomotor , Generalización Psicológica , Aprendizaje , Movimiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda