Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Sensors (Basel) ; 24(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39066142

RESUMEN

To amplify the displacement of the radiation shell, a double-shell type-IV curved hydroacoustic transducer was proposed. Through Ansys finite element simulation, the vibration modes of the transducer in different stages and the harmonic response characteristics in air and water were studied, and the bandwidth emission of the hydroacoustic transducer was achieved. By optimizing the size of each component, the resonant frequency of the transducer is 740 Hz, the maximum conductivity was 0.66 mS, and the maximum transmitting voltage response was 130 dB. According to the optimized parameters, a longitudinal acoustic transducer prototype was manufactured, and a physical test was conducted in an anechoic pool. The obtained resonant frequency was 750 Hz, the maximum conductivity was 0.44 mS, the maximum transmitting voltage response was 129.25 dB, and the maximum linear dimension was 250 mm, which match the simulated value of the virtual prototype and meet the expected requirements.

2.
Purinergic Signal ; 19(4): 663-671, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36653592

RESUMEN

Hypertension has become a prominent public health concern. Essential hypertension (EH) is a polygenic disorder caused by multiple susceptibility genes. It has been previously shown that the purinergic P2Y2 receptor (P2Y2R) regulates blood pressure; however, whether P2Y2R genetic polymorphisms correlate with EH has not been investigated in Chinese. Our study included 500 EH cases and 504 controls who are Chinese postmenopausal women. We used allele-specific polymerase chain reaction (ASPCR) to genotype five single-nucleotide polymorphism (SNPs) in the P2Y2R gene, i.e., rs4944831, rs12366239, rs1783596, rs4382936, and rs10898909. We assessed the association of P2Y2R genetic polymorphisms with EH susceptibility. The results demonstrated that P2Y2R rs4382936A was correlated with a high risk of EH; particularly, the participants with the rs4382936A allele and CA/AA/(CA+AA) genotypes were at higher risks to EH compared to the subjects with the rs4382936C allele and CC genotype. Moreover, haplotype CAG combined by rs1783596-rs4382936-rs10898909 was a susceptible haplotype for EH, whereas haplotype CCG was a protective haplotype for EH. These results may provide new evidence for applying P2Y2R genetic polymorphisms as useful markers in clinic screening or monitoring potential EH cases in a population of Chinese postmenopausal women.


Asunto(s)
Hipertensión , Posmenopausia , Humanos , Femenino , Posmenopausia/genética , Hipertensión Esencial , Hipertensión/genética , Genotipo , Haplotipos , Polimorfismo de Nucleótido Simple/genética , China/epidemiología , Predisposición Genética a la Enfermedad/genética , Frecuencia de los Genes
3.
Mol Biol Rep ; 49(5): 3955-3964, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35235160

RESUMEN

PURPOSE: Cellular responses following cerebral ischemia/reperfusion injury are critical to recovery and survival after ischemic stroke. Understanding of these cellular responses can help the design of therapies to protect brain tissue and promote recovery after stroke. One of these cellular responses may be mediated by the AKT (protein kinase B) signal transduction pathway. This study was aimed to investigate the cerebral ischemia-induced alterations of AKT signaling and the upstream molecular pathways. METHODS: We modeled cerebral ischemia by middle cerebral artery occlusion in 2-3-month-old male C57BL/6J mice and then analyze the brain samples by using quantitative Western blots and phosphorylation/activation-dependent kinase antibodies. Cerebral ischemia was confirmed by staining of brain slices with 1% 2,3,5-triphenyltetrazolium chloride (TTC) and Nissl, as well as neurological assessments of the mice 24 h after ischemia-reperfusion surgery. RESULTS: We found marked downregulation of AKT within 12 h of cerebral ischemia/reperfusion, which leads to overactivation of glycogen synthase kinase-3ß (GSK-3ß). Furthermore, we found that the downregulation of AKT was mediated by downregulation of mTORC2 (the complex 2 of the mechanistic target of rapamycin) instead of its common upstream kinases, phosphatidylinositol 3-kinase and phosphoinositide-dependent kinase-1. CONCLUSION: Our findings provide new insight into the cellular responses to ischemia/reperfusion brain injury and will help develop new treatments targeting the AKT signaling pathway for the treatment of ischemic stroke.


Asunto(s)
Isquemia Encefálica , Glucógeno Sintasa Quinasa 3 beta , Accidente Cerebrovascular Isquémico , Proteínas Proto-Oncogénicas c-akt , Daño por Reperfusión , Serina-Treonina Quinasas TOR , Animales , Isquemia Encefálica/metabolismo , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-36499564

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that eventually leads to dementia and death of the patient. Currently, no effective treatment is available that can slow or halt the progression of the disease. The gut microbiota can modulate the host immune system in the peripheral and central nervous system through the microbiota-gut-brain axis. Growing evidence indicates that gut microbiota dysbiosis plays an important role in the pathogenesis of AD, and modulation of the gut microbiota may represent a new avenue for treating AD. Immunotherapy targeting Aß and tau has emerged as the most promising disease-modifying therapy for the treatment of AD. However, the underlying mechanism of AD immunotherapy is not known. Importantly, preclinical and clinical studies have highlighted that the gut microbiota exerts a major influence on the efficacy of cancer immunotherapy. However, the role of the gut microbiota in AD immunotherapy has not been explored. We found that immunotherapy targeting tau can modulate the gut microbiota in an AD mouse model. In this article, we focused on the crosstalk between the gut microbiota, immunity, and AD immunotherapy. We speculate that modulation of the gut microbiota induced by AD immunotherapy may partially underlie the efficacy of the treatment.


Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Animales , Ratones , Enfermedad de Alzheimer/patología , Disbiosis/terapia , Modelos Animales de Enfermedad , Sistema Nervioso Central/patología
5.
J Biol Chem ; 295(40): 13812-13828, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737201

RESUMEN

Neurofibrillary tangles of abnormally hyperphosphorylated Tau are a hallmark of Alzheimer's disease (AD) and related tauopathies. Tau is truncated at multiple sites by various proteases in AD brain. Although many studies have reported the effect of truncation on the aggregation of Tau, these studies mostly employed highly artificial conditions, using heparin sulfate or arachidonic acid to induce aggregation. Here, we report for the first time the pathological activities of various truncations of Tau, including site-specific phosphorylation, self-aggregation, binding to hyperphosphorylated and oligomeric Tau isolated from AD brain tissue (AD O-Tau), and aggregation seeded by AD O-Tau. We found that deletion of the first 150 or 230 amino acids (aa) enhanced Tau's site-specific phosphorylation, self-aggregation, and binding to AD O-Tau and aggregation seeded by AD O-Tau, but deletion of the first 50 aa did not produce a significant effect. Deletion of the last 50 aa was found to modulate Tau's site-specific phosphorylation, promote its self-aggregation, and cause it to be captured by and aggregation seeded by AD O-Tau, whereas deletion of the last 20 aa had no such effects. Among the truncated Taus, Tau151-391 showed the highest pathological activities. AD O-Tau induced aggregation of Tau151-391in vitro and in cultured cells. These findings suggest that the first 150 aa and the last 50 aa protect Tau from pathological characteristics and that their deletions facilitate pathological activities. Thus, inhibition of Tau truncation may represent a potential therapeutic approach to suppress Tau pathology in AD and related tauopathies.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Eliminación de Secuencia , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Animales , Células HEK293 , Células HeLa , Humanos , Ratones , Ratas , Proteínas tau/genética
6.
J Neurochem ; 155(6): 697-713, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32578216

RESUMEN

Moderate dietary restriction can ameliorate age-related chronic diseases such as Alzheimer's disease (AD) by increasing the expression of neurotrophic factors and promoting neurogenesis in the brain. Glycogen synthase kinase-3ß (GSK-3ß) signaling is essential for the coordination of progenitor cell proliferation and differentiation during brain development. The mechanisms by which GSK-3ß is involved in dietary restriction-induced neurogenesis and cognitive improvement remain unclear. Six-month-old male 3xTg-AD and wild-type mice were fed on alternate days (intermittent fasting, IF) or ad libitum (AL) for 3 months. GSK-3ß activity was regulated by bilaterally infusing lentiviral vectors carrying siRNA targeting GSK-3ß into the dentate gyrus region of the hippocampus. Intermittent fasting promoted neuronal differentiation and maturation in the dentate gyrus and ameliorated recognized dysfunction in 3xTg-AD mice. These effects were reversed by siRNA targeting GSK-3ß. After intermittent fasting, the insulin and protein kinase A signaling pathways were inhibited, while the adenosine monophosphate-activated protein kinase and brain-derived neurotrophic factor pathways were activated. These findings suggest that intermittent fasting can promote neuronal differentiation and maturation in the hippocampus by activating GSK-3ß, thus improving learning and memory.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Diferenciación Celular/fisiología , Ayuno/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Glucógeno Sintasa Quinasa 3 beta/genética , Hipocampo/citología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
7.
J Biochem Mol Toxicol ; 34(2): e22430, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31833155

RESUMEN

The aim of this study was to investigate the effect of melatonin (MT) and its metabolite N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK) on Alzheimer-like learning and memory impairment in rats intracerebroventricularly injected with streptozotocin (STZ). The results showed that the escape latency of the STZ group was longer than that of the control (CON), MT, and AFMK groups. Increased levels of hyperphosphorylated tau, neurofilament proteins, and malondialdehyde and decreased superoxide dismutase levels were observed in the brains of the rats from the STZ group compared with the brains of the rats from the CON, MT, AFMK high and low group. These results suggest that exogenous MT and AFMK can improve memory impairment and downregulate AD-like hyperphosphorylation induced by STZ, most likely through their antioxidation function. Meanwhile, we found that an equal dose of AFMK had a stronger effect than that of MT. Our results indicate that MT and its metabolite AFMK represent novel treatment strategies for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Antioxidantes/uso terapéutico , Kinuramina/análogos & derivados , Melatonina/uso terapéutico , Memoria Espacial/efectos de los fármacos , Enfermedad de Alzheimer/inducido químicamente , Animales , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Glutatión Peroxidasa/metabolismo , Kinuramina/farmacología , Kinuramina/uso terapéutico , Masculino , Malondialdehído/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Melatonina/farmacología , Proteínas de Neurofilamentos/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Estreptozocina/efectos adversos , Estreptozocina/farmacología , Superóxido Dismutasa/metabolismo , Proteínas tau/metabolismo
8.
J Cell Physiol ; 234(6): 9849-9861, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30417395

RESUMEN

Increasing evidence has suggested high-fat diet (HFD) is an independent risk factor for myocardial ischemia/reperfusion (MI/R) injury. Long noncoding RNAs (lncRNAs) recently attracted much attraction in the study of MI/R injury. However, the functional questions of specific lncRNAs in HFD-induced MI/R injury have not been well elucidated. Uc.48+ is a lncRNA from a transcribed ultraconserved region (T-UCR) of human, mouse, and rat genomes. Here, we explored the aggravating role of uc.48+and identified purinergic P2X7 receptor (P2X7R) as a downstream regulator of uc.48+ in HFD-induced MI/R vulnerability. We demonstrated uc.48+ expression was upregulated, accompanied by the corresponding upregulation of P2X7R in HFD I/R myocardium and HFD-induced MI/R vulnerability. Overexpression of uc.48+enhanced, whereas silencing of uc.48 + decreased the expression of P2X7R, cardiomyocyte apoptosis, and MI/R injury. The functional relevance of uc.48+ regulated P2X7R expression and the subsequent NF-κB signaling to promote cardiomyocyte apoptosis was supported by inhibition of P2X7R with its specific antagonist (A438079) as well as the inhibitor of NF-κB signaling (pyrrolidine dithiocarbamate, PDTC) in H9c2 hypoxia/reoxygenation (H/R) cells transfected with pcDNA3.0-uc.48 + plasmid, and RNA immunoprecipitation (RIP) suggested uc.48+ could interact with transcription factor Sp1. Importantly, Sp1 inhibitor (mithramycin, MIT) was found to suppress uc.48+ -induced P2X7R expression and the NF-κB signaling and cardiomyocyte apoptosis. Our findings provide a potential novel mechanism through which uc.48+ boosts cardiomyocyte apoptosis and MI/R vulnerability to HFD. Thus, uc.48+ is a novel regulator of HFD-induced MI/R injury; targeting uc.48+ may be a novel therapeutic approach of MI/R vulnerability to HFD.


Asunto(s)
Dieta Alta en Grasa , Daño por Reperfusión Miocárdica/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Apoptosis , Regulación de la Expresión Génica , Masculino , Miocitos Cardíacos/fisiología , ARN Largo no Codificante/farmacología , ARN Mensajero , ARN Interferente Pequeño , Ratas , Ratas Sprague-Dawley , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo
9.
Nucleic Acids Res ; 45(10): 6177-6193, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28335005

RESUMEN

In the brains of individuals with Alzheimer's disease (AD) and chronic traumatic encephalopathy, tau pathology is accompanied usually by intracellular aggregation of transactive response DNA-binding protein 43 (TDP-43). However, the role of TDP-43 in tau pathogenesis is not understood. Here, we investigated the role of TDP-43 in tau expression in vitro and in vivo. We found that TDP-43 suppressed tau expression by promoting its mRNA instability through the UG repeats of its 3΄-untranslated region (3΄-UTR). The C-terminal region of TDP-43 was required for this function. Neurodegenerative diseases-causing TDP-43 mutations affected tau mRNA instability differentially, in that some promoted and others did not significantly affect tau mRNA instability. The expression levels of tau and TDP-43 were inverse in the frontal cortex and the cerebellum. Accompanied with cytoplasmic accumulation of TDP-43, tau expression was elevated in TDP-43M337V transgenic mouse brains. The level of TDP-43, which is decreased in AD brains, was found to correlate negatively with the tau level in human brain. Our findings indicate that TDP-43 suppresses tau expression by promoting the instability of its mRNA. Down-regulation of TDP-43 may be involved in the tau pathology in AD and related neurodegenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Regulación de la Expresión Génica , Estabilidad del ARN , ARN Mensajero/metabolismo , Proteínas tau/genética , Regiones no Traducidas 3' , Anciano , Anciano de 80 o más Años , Animales , Células Cultivadas , Cerebelo/química , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Femenino , Lóbulo Frontal/química , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Dominios Proteicos , Interferencia de ARN , ARN Mensajero/genética , Ratas , Ratas Wistar , Proteínas Recombinantes de Fusión/metabolismo , Proteínas tau/biosíntesis
10.
Adv Exp Med Biol ; 1128: 103-131, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31062327

RESUMEN

Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are both serious global health problems with high prevalence. These two diseases have some common features, including risk factors, age-associated disease onsets, insulin resistance, impaired glucose metabolism, deregulation of O-GlcNAcylation, chronic oxidative stress, and inflammation. Some of these features, such as insulin resistance, impaired glucose metabolism, and deregulation of O-GlcNAcylation, may serve as molecular links between T2DM and AD. Research on these molecular links is reviewed and discussed in this chapter. Understanding of these molecular links will help uncover the disease mechanisms and design therapeutic strategies to prevent and treat these two devastating diseases.


Asunto(s)
Enfermedad de Alzheimer/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Resistencia a la Insulina , Encéfalo/fisiopatología , Humanos , Estrés Oxidativo , Factores de Riesgo
11.
J Biol Chem ; 292(25): 10600-10612, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28487370

RESUMEN

Hyperphosphorylation and aggregation of the neuronal protein tau are responsible for neurodegenerative diseases called tauopathies. Dysregulation of the alternative splicing of tau exon 10 results in alterations of the ratio of two tau isoforms, 3R-tau and 4R-tau, which have been seen in several tauopathies. Transactive response DNA-binding protein of 43 kDa (TDP-43) is involved in the regulation of RNA processing, including splicing. Cytoplasmic aggregation of TDP-43 has been observed in the brains of individuals with chronic traumatic encephalopathy or Alzheimer's disease, diseases in which neurofibrillary tangles of hyperphosphorylated tau are hallmarks. Here, we investigated the role of TDP-43 in tau exon 10 splicing. We found that TDP-43 promoted tau exon 10 inclusion, which increased production of the 4R-tau isoform. Moreover, TDP-43 could bind to intron 9 of tau pre-mRNA. Deletion of the TDP-43 N or C terminus promoted its cytoplasmic aggregation and abolished or diminished TDP-43-promoted tau exon 10 inclusion. Several TDP-43 mutations associated with amyotrophic lateral sclerosis or frontotemporal lobar degeneration with ubiquitin inclusions promoted tau exon 10 inclusion more effectively than wild-type TDP-43 but did not affect TDP-43 cytoplasmic aggregation in cultured cells. The ratio of 3R-tau/4R-tau was decreased in transgenic mouse brains expressing human TDP-43 and increased in the brains expressing the disease-causing mutation TDP-43M337V, in which cytoplasmic TDP-43 was increased. These findings suggest that TDP-43 promotes tau exon 10 inclusion and 4R-tau expression and that disease-related changes of TDP-43, truncations and mutations, affect its function in tau exon 10 splicing, possibly because of TDP-43 mislocalization to the cytoplasm.


Asunto(s)
Empalme Alternativo , Proteínas de Unión al ADN/metabolismo , Exones , Agregación Patológica de Proteínas/metabolismo , Tauopatías/metabolismo , Proteínas tau/metabolismo , Sustitución de Aminoácidos , Animales , Células COS , Chlorocebus aethiops , Citoplasma/genética , Citoplasma/metabolismo , Citoplasma/patología , Proteínas de Unión al ADN/genética , Células HeLa , Células Hep G2 , Humanos , Ratones , Ratones Transgénicos , Mutación Missense , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Tauopatías/genética , Tauopatías/patología , Proteínas tau/genética
12.
Biochem Biophys Res Commun ; 497(1): 194-199, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29427667

RESUMEN

O-GlcNAcylation is a post-translational modification of proteins. Protein kinase A (PKA)-cAMP response element binding protein (CREB) signaling plays critical roles in multiple biological processes. Isoforms α and ß of PKA catalytic subunit (PKAc) and CREB are modified by O-GlcNAcylation. In the present study, we determined the role of O-GlcNAcylation in PKAc isoform-specific CREB signaling. We found that up-regulation of O-GlcNAcylation enhanced CREB phosphorylation, but suppressed CREB expression in exogenous PKAc isoform-unspecific manner. PKAc isoforms affected exogenous expression of OGT or OGA and protein O-GlcNAcylation differently. Up-regulation of O-GlcNAcylation did not significantly affect net PKAcα-CREB signaling, but enhanced PKAcß-CREB signaling. The role of O-GlcNAcylation in PKA-CREB signaling was desensitized by insulin treatment. This study suggests a role of O-GlcNAcylation in PKA-CREB signaling by affecting phosphorylation of CREB in a PKAc isoform-specific manner.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Acilación , Animales , Dominio Catalítico/fisiología , Línea Celular , Células HEK293 , Humanos , Isoenzimas/metabolismo , Ratones , Fosforilación
13.
J Bone Miner Metab ; 36(4): 488-497, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28884379

RESUMEN

Osteoporosis (OP) is an increasing public health problem worldwide. Genetic factors are considered to be major contributors to the pathogenesis of OP. The aim of this study was to investigate the association of the purinergic P2X7 receptor (P2X7R) and estrogen receptor-α (ER-α) genes with OP risk, and the effect of the possible interaction between the two genes on predisposition to OP in Chinese postmenopausal women. A total of 596 subjects, including 350 OP patients and 246 controls, were recruited in this case-control study. Five functional single-nucleotide polymorphisms (SNPs) in the P2X7R gene (rs2393799, rs7958311, rs1718119, rs2230911, rs3751143) and two ER-α PvuII and XbaI polymorphisms were genotyped and analyzed. Single-gene variant analysis showed that the carriers of the CC genotype of P2X7R rs3751143 revealed an increased OP risk. Haplotype rs1718119G-rs2230911G-rs3751143C also appeared to be a significant 'risk' haplotype with OP. For the ER-α gene, no evidence of significant association of PvuII or XbaI polymorphism with OP risk was found. Moreover, there was a significant gene-gene interaction between P2X7R rs3751143 and ER-α PvuII; the cross-validation consistency was 10/10 and the testing accuracy was 0.5818 (P = 0.0107). A 1.67-fold-increased risk for OP was detected in individuals carrying the genotypes of AC or CC of rs3751143 and Pp or PP of PvuII compared to subjects with AA of rs3751143 and pp of PvuII. Our findings suggest an important association of the P2X7R rs3751143CC genotype and the rs1718119G-rs2230911G-rs3751143C haplotype with an increased OP risk. Also, the P2X7R rs3751143 and ER-α PvuII two-locus interaction confers a significantly high susceptibility to OP in Chinese postmenopausal women.


Asunto(s)
Pueblo Asiatico/genética , Epistasis Genética , Receptor alfa de Estrógeno/genética , Predisposición Genética a la Enfermedad , Osteoporosis Posmenopáusica/genética , Polimorfismo Genético , Receptores Purinérgicos P2X7/genética , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes/genética , Haplotipos/genética , Humanos , Modelos Logísticos , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo
14.
J Pathol ; 243(1): 78-88, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28657654

RESUMEN

Protein modification by O-linked ß-N-acetylglucosamine (O-GlcNAc) is emerging as an important factor in the pathogenesis of sporadic Alzheimer's disease (AD); however, detailed molecular characterization of this important protein post-translational modification at the proteome level has been highly challenging, owing to its low stoichiometry and labile nature. Herein, we report the most comprehensive, quantitative proteomics analysis for protein O-GlcNAcylation in postmortem human brain tissues with and without AD by the use of isobaric tandem mass tag labelling, chemoenzymatic photocleavage enrichment, and liquid chromatography coupled to mass spectrometry. A total of 1850 O-GlcNAc peptides covering 1094 O-GlcNAcylation sites were identified from 530 proteins in the human brain. One hundred and thirty-one O-GlcNAc peptides covering 81 proteins were altered in AD brains as compared with controls (q < 0.05). Moreover, alteration of O-GlcNAc peptide abundance could be attributed more to O-GlcNAcylation level than to protein level changes. The altered O-GlcNAcylated proteins belong to several structural and functional categories, including synaptic proteins, cytoskeleton proteins, and memory-associated proteins. These findings suggest that dysregulation of O-GlcNAcylation of multiple brain proteins may be involved in the development of sporadic AD. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Memoria , Proteínas del Tejido Nervioso/metabolismo , Procesamiento Proteico-Postraduccional , Proteómica , Sinapsis/metabolismo , Transmisión Sináptica , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Autopsia , Biomarcadores/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Cromatografía Liquida , Glicosilación , Humanos , Proteómica/métodos , Reproducibilidad de los Resultados , Sinapsis/patología , Espectrometría de Masas en Tándem
15.
Purinergic Signal ; 13(3): 339-346, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28497417

RESUMEN

Osteoporosis (OP) is a major public health problem worldwide. Genetic factors are considered to be major contributors to the pathogenesis of OP. The purinergic P2X7 receptor (P2X7R) has been shown to play a role in the regulation of osteoblast and osteoclast activity and has been considered as an important candidate gene for OP. A case-control study was performed to investigate the associations of functional single nucleotide polymorphisms (SNPs) in the P2X7R gene (rs2393799, rs7958311, rs1718119, rs2230911, and rs3751143) with susceptibility to OP in 400 Chinese OP patients and 400 controls. Results showed that rs3751143 was associated with OP; in particular, carriers of the C allele and CC/(AC + CC) genotypes were at a higher risk of OP, but no significant association of rs2230911, rs7958311, rs1718119, and rs2393799 with OP risk was observed. Analysis of the haplotypes revealed one haplotype (rs1718119G-rs2230911G-rs3751143C) that appeared to be a significant "risk" haplotype with OP. The rs3751143 polymorphism was associated with osteoclast apoptosis; ATP-induced caspase-1 activity of osteoclasts with AC and CC genotypes is lower than that of osteoclasts with AA genotype in vitro. The findings suggest that the P2X7R rs3751143 functional polymorphism might contribute to OP susceptibility in Chinese postmenopausal women.


Asunto(s)
Predisposición Genética a la Enfermedad , Osteoporosis/genética , Posmenopausia/genética , Receptores Purinérgicos P2X7/genética , Pueblo Asiatico , Estudios de Casos y Controles , Femenino , Frecuencia de los Genes/genética , Genotipo , Humanos , Polimorfismo de Nucleótido Simple/genética , Factores Sexuales
16.
J Biol Chem ; 290(24): 15219-37, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25918155

RESUMEN

Hyperphosphorylation and dysregulation of exon 10 splicing of Tau are pivotally involved in pathogenesis of Alzheimer disease (AD) and/or other tauopathies. Alternative splicing of Tau exon 10, which encodes the second microtubule-binding repeat, generates Tau isoforms containing three and four microtubule-binding repeats, termed 3R-Taus and 4R-Taus, respectively. Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) lies at the Down syndrome critical region of chromosome 21. Overexpression of this kinase may contribute to the early Tau pathology in Down syndrome via phosphorylation of Tau and dysregulation of Tau exon 10. Here, we report that Dyrk1A was truncated at the C terminus and was associated with overactivation of calpain I in AD brain. Calpain I proteolyzed Dyrk1A in vitro first at the C terminus and further at the N terminus and enhanced its kinase activity toward Tau via increased Vmax but not Km. C-terminal truncation of Dyrk1A resulted in stronger activity than its full-length protein in promotion of exon 10 exclusion and phosphorylation of Tau. Dyrk1A was truncated in kainic acid-induced excitotoxic mouse brains and coincided with an increase in 3R-Tau expression and phosphorylation of Tau via calpain activation. Moreover, truncation of Dyrk1A was correlated with an increase in the ratio of 3R-Tau/4R-Tau and Tau hyperphosphorylation in AD brain. Collectively, these findings suggest that truncation/activation of Dyrk1A by Ca(2+)/calpain I might contribute to Tau pathology via promotion of exon 10 exclusion and hyperphosphorylation of Tau in AD brain.


Asunto(s)
Enfermedad de Alzheimer/patología , Calpaína/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas tau/fisiología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/enzimología , Secuencia de Aminoácidos , Animales , Estudios de Casos y Controles , Activación Enzimática , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Proteolisis , Quinasas DyrK
17.
Alzheimers Dement ; 12(10): 1078-1089, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27126545

RESUMEN

O-GlcNAcylation is the posttranslational modification of intracellular proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc). The discovery of O-GlcNAc modification of tau and its impact on tau phosphorylation has attracted recent research interest in O-GlcNAc studies in the Alzheimer's disease (AD) field. Modification of proteins by O-GlcNAc occurs extensively in the brain. The expressions and activities of the enzymes catalyzing O-GlcNAc cycling are several-fold higher in the brain than in the peripheral tissues. The O-GlcNAcylation levels of brain proteins including tau are decreased in AD brain, probably due to decreased brain glucose metabolism. The reduction of brain O-GlcNAcylation appears to mediate the molecular mechanism by which decreased brain glucose metabolism contributes to neurodegeneration. Studies on mouse models of tauopathies suggest a neuroprotective role of pharmacological elevation of brain O-GlcNAc, which could potentially be a promising approach for treating AD and other neurodegenerative diseases.


Asunto(s)
Acetilglucosamina/metabolismo , Glicosilación , Tauopatías/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Glucosa/metabolismo , Humanos , Ratones , Fosforilación
18.
Cell Mol Neurobiol ; 35(1): 101-10, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25352419

RESUMEN

Chronic cerebral hypoperfusion (CCH) is a common consequence of various cerebral vascular disorders and hemodynamic and blood changes. Recent studies have revealed an important role of CCH in neurodegeneration and dementia, including vascular dementia and Alzheimer's disease (AD). This article reviews the recent advances in understanding CCH-induced neurodegeneration and AD-related brain pathology and cognitive impairment. We discuss the causes and assessment of CCH, the possible mechanisms by which CCH promotes Alzheimer-like pathology and neurodegeneration, and animal models of CCH. It appears that CCH promotes neurodegeneration and AD through multiple mechanisms, including induction of oxidative stress, Aß accumulation and aggravation, tau hyperphosphorylation, synaptic dysfunction, neuronal loss, white matter lesion, and neuroinflammation. Better understanding of the mechanisms of CCH will help develop therapeutic strategies for preventing and treating neurodegeneration, including sporadic AD and vascular dementia, caused by CCH.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Circulación Cerebrovascular/fisiología , Enfermedad de Alzheimer/fisiopatología , Animales , Humanos , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología
19.
J Neural Transm (Vienna) ; 122(4): 607-17, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25233799

RESUMEN

Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aß accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aß pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aß pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Trastornos del Conocimiento/patología , Trastornos del Conocimiento/terapia , Inmunización Pasiva/métodos , Proteínas tau/inmunología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Anticuerpos/administración & dosificación , Trastornos del Conocimiento/etiología , Modelos Animales de Enfermedad , Femenino , Humanos , Aprendizaje por Laberinto , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo , Fosforilación , Placa Amiloide/etiología , Placa Amiloide/patología , Placa Amiloide/terapia , Presenilina-1/genética , Presenilina-1/metabolismo , Proteínas tau/química , Proteínas tau/genética , Proteínas tau/metabolismo
20.
J Neural Transm (Vienna) ; 122(4): 593-606, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25113171

RESUMEN

Sporadic Alzheimer's disease (AD) is a multifactorial metabolic brain disorder characterized by progressive neurodegeneration. Decreased brain energy and glucose metabolism occurs before the appearance of AD symptoms and worsens while the disease progresses. Deregulated brain insulin signaling has also been found in AD recently. To restore brain insulin sensitivity and glucose metabolism, pioglitazone and rosiglitazone, two insulin sensitizers commonly used for treating type 2 diabetes, have been studied and shown to have some beneficial effects in AD mouse models. However, the molecular mechanisms of the beneficial effects remain elusive. In the present study, we treated the 3xTg-AD mice, a widely used mouse model of AD, with pioglitazone and rosiglitazone for 4 months and studied the effects of the treatments on cognitive performance and AD-related brain alterations. We found that the chronic treatment improved spatial learning, enhanced AKT signaling, and attenuated tau hyperphosphorylation and neuroinflammation. These findings shed new light on the possible mechanisms by which these two insulin sensitizers might be useful for treating AD and support further clinical trials evaluating the efficacy of these drugs.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Encéfalo/efectos de los fármacos , Hipoglucemiantes/farmacología , Discapacidades para el Aprendizaje/tratamiento farmacológico , Nootrópicos/farmacología , Proteínas tau/metabolismo , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Animales , Peso Corporal/efectos de los fármacos , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Femenino , Discapacidades para el Aprendizaje/fisiopatología , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Neuroinmunomodulación/efectos de los fármacos , Neuroinmunomodulación/fisiología , Fármacos Neuroprotectores/farmacología , Fosforilación/efectos de los fármacos , Pioglitazona , Proteínas Proto-Oncogénicas c-akt/metabolismo , Rosiglitazona , Aprendizaje Espacial/efectos de los fármacos , Tiazolidinedionas/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda