Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Bioorg Chem ; 144: 107134, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237389

RESUMEN

Two series of 2,4-diarylaminopyrimidine derivatives containing sulfonamide moiety were designed and synthesized for screening as inhibitors of focal adhesion kinase (FAK). Most compounds significantly inhibited the enzymatic activities of FAK, and the best compound was 7b (IC50 = 0.27 nM). A majority of aminoethyl sulfonamide derivatives could effectively inhibit the proliferation of human cancer cell lines (HCT116, A549, MDA-MB-231 and Hela) expressing high levels of FAK. Particularly, compounds 7b, 7c, and 7o exhibited more significant efficacy against all of four cancer cell lines within concentrations of 1.5 µM. Furthermore, these three compounds displayed higher selectivity of cancer cells over normal cells (SI value > 14), compared to the positive control TAE226 (SI value = 1.63). Interestingly, introduction of dithiocarbamate moiety to the aminoethyl sulfonamide derivatives can indeed improve the antiproliferative activities against A549 cells. Especially, compound 8d demonstrated most significant cytotoxicity activity against A549 cells with an IC50 value of 0.08 µM, which is 20-fold superior to parent compound 7k. Additionally, compound 7b, which display the best anti-FAK potency, can inhibit the clone formation and migration of HCT-116 cells, and cause cell cycle arrest at G2/M phase, inducing apoptosis by promoting ROS production. Overall, these results suggest that 7b is a valuable FAK inhibitor that deserves further optimization to improve its druggability.


Asunto(s)
Antineoplásicos , Humanos , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Proteína-Tirosina Quinasas de Adhesión Focal , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad , Sulfonamidas/farmacología , Pirimidinas/química , Pirimidinas/farmacología
2.
Pharmaceutics ; 16(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675217

RESUMEN

Immunotherapy is a clinically effective method for treating tumors. Manganese can activate the cGAS-STING signaling pathway and induce an anti-tumor immune response. However, its efficacy is hindered by non-specific distribution and low uptake rates. In this study, we employed microfluidic technology to design and develop an innovative preparation process, resulting in the creation of a novel manganese lipid nanoparticle (LNM). The lipid manganese nanoparticle produced in this process boasts a high manganese payload, excellent stability, the capacity for large-scale production, and high batch repeatability. LNM has effectively demonstrated the ability to activate the cGAS-STING signaling pathway, induce the production of pro-inflammatory cytokines, and inhibit tumor development. Notably, LNM does not require combination chemotherapy drugs or other immune activators. Therefore, LNM presents a safe, straightforward, and efficient strategy for anti-tumor immune activation, with the potential for scalable production.

3.
Adv Mater ; 36(26): e2402445, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583077

RESUMEN

Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.


Asunto(s)
Materiales Biomiméticos , Barrera Hematoencefálica , Membrana Celular , Humanos , Barrera Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Membrana Celular/química , Animales , Materiales Biomiméticos/química , Biomimética/métodos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Portadores de Fármacos/química , Encefalopatías/tratamiento farmacológico , Encefalopatías/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda