Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Respir Res ; 25(1): 119, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459541

RESUMEN

BACKGROUND: The pattern recognition receptor Dectin-1 was initially discovered to play a pivotal role in mediating pulmonary antifungal immunity and promoting neutrophil-driven inflammation. Recent studies have revealed that Dectin-1 is overexpressed in asthma, but the specific mechanism remains elusive. Additionally, Dectin-1 has been implicated in promoting pyroptosis, a hallmark of severe asthma airway inflammation. Nevertheless, the involvement of the non-classical pyroptosis signal caspase-11/4 and its upstream regulatory mechanisms in asthma has not been completely explored. METHODS: House dust mite (HDM)-induced mice was treated with Dectin-1 agonist Curdlan, Dectin-1 inhibitor Laminarin, and caspase-11 inhibitor wedelolactone separately. Subsequently, inflammatory cells in bronchoalveolar lavage fluid (BALF) were analyzed. Western blotting was performed to measure the protein expression of caspase-11 and gasdermin D (GSDMD). Cell pyroptosis and the expression of chemokine were detected in vitro. The correlation between Dectin-1 expression, pyroptosis factors and neutrophils in the induced sputum of asthma patients was analyzed. RESULTS: Curdlan appeared to exacerbate neutrophil airway inflammation in asthmatic mice, whereas wedelolactone effectively alleviated airway inflammation aggravated by Curdlan. Moreover, Curdlan enhanced the release of caspase-11 activation fragments and N-terminal fragments of gasdermin D (GSDMD-N) stimulated by HDM both in vivo or in vitro. In mouse alveolar macrophages (MH-S cells), Curdlan/HDM stimulation resulted in vacuolar degeneration and elevated lactate dehydrogenase (LDH) release. In addition, there was an upregulation of neutrophil chemokines CXCL1, CXCL3, CXCL5 and their receptor CXCR2, which was suppressed by wedelolactone. In asthma patients, a positive correlation was observed between the expression of Dectin-1 on macrophages and caspase-4 (the human homology of caspase-11), and the proportion of neutrophils in induced sputum. CONCLUSION: Dectin-1 activation in asthma induced caspase-11/4 mediated macrophage pyroptosis, which subsequently stimulated the secretion of chemokines, leading to the exacerbation of airway neutrophil inflammation.


Asunto(s)
Asma , Lectinas Tipo C , Neutrófilos , Animales , Humanos , Ratones , Asma/metabolismo , Caspasas/metabolismo , Quimiocinas/metabolismo , Gasderminas , Inflamación/metabolismo , Pulmón/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Pyroglyphidae , Piroptosis
2.
Biotechnol Bioeng ; 121(9): 2893-2906, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38822747

RESUMEN

D-amino acid oxidase (DAAO)-catalyzed selective oxidative deamination is a very promising process for synthesizing l-amino acids including l-phosphinothricin (l-PPT, a high-efficiency and broad-spectrum herbicide). However, the wild-type DAAO's low activity toward unnatural substrates like d-phosphinothricin (d-PPT) hampers its application. Herein, a DAAO from Caenorhabditis elegans (CeDAAO) was screened and engineered to improve the catalytic potential on d-PPT. First, we designed a novel growth selection system, taking into account the intricate relationship between the growth of Escherichia coli (E. coli) and the catalytic mechanism of DAAO. The developed system was used for high-throughput screening of gene libraries, resulting in the discovery of a variant (M6) with significantly increased catalytic activity against d-PPT. The variant displays different catalytic properties on substrates with varying hydrophobicity and hydrophilicity. Analysis using Alphafold2 modeling and molecular dynamic simulations showed that the reason for the enhanced activity was the substrate-binding pocket with enlarged size and suitable charge distribution. Further QM/MM calculations revealed that the crucial factor for enhancing activity lies in reducing the initial energy barrier of the reductive half reaction. Finally, a comprehensive binding-model index to predict the enhanced activity of DAAO toward d-PPT, and an enzymatic deracemization approach was developed, enabling the efficient synthesis of l-PPT with remarkable efficiency.


Asunto(s)
Aminobutiratos , Caenorhabditis elegans , D-Aminoácido Oxidasa , Escherichia coli , Ingeniería de Proteínas , D-Aminoácido Oxidasa/metabolismo , D-Aminoácido Oxidasa/genética , D-Aminoácido Oxidasa/química , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Caenorhabditis elegans/genética , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/metabolismo , Ingeniería de Proteínas/métodos , Animales , Aminobutiratos/metabolismo , Aminobutiratos/química , Desaminación , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química
3.
Curr Issues Mol Biol ; 44(11): 5234-5246, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36354668

RESUMEN

Acute diarrhoea and intestinal inflammation represent one of the most prevalent clinical disorders of milk production, resulting in enormous annual financial damage for the dairy sector. In the context of an unsatisfactory therapeutic effect of antibiotics, the natural products of plants have been the focus of research. Quercetin is an important flavonoid found in a variety of plants, including fruits and vegetables, and has strong anti-inflammatory effects, so it has received extensive attention as a potential anti-inflammatory antioxidant. However, the underlying basis of quercetin on inflammatory reactions and oxidative tension generated by lipopolysaccharide (LPS) in bovine intestinal epithelial cells (BIECs) is currently unexplained. This research aimed to determine the influence of quercetin on LPS-induced inflammatory reactions, oxidative tension, and the barrier role of BIECs. Our findings demonstrated that BIEC viability was significantly improved in LPS-treated BIEC with 80 µg/mL quercetin compared with the control group. Indicators of oxidative overload and genes involved in barrier role revealed that 80 µg/mL quercetin efficiently rescued BIECs from oxidative and barrier impairment triggered by 5 µg/mL LPS. In addition, the mRNA expression of pro-inflammatory cytokines TNF-α, IL-1ß, and IL-6, as well as chemokines CXCL2, CXCL5, CCL5, and CXCL8, was diminished in LPS-treated BIECs with 80 µg/mL quercetin compared with LPS alone. Furthermore, the mRNA expression of toll-like receptor 4 (TLR4), CD14, myeloid differential protein-2 (MD2), and myeloid differentiation primary response protein (MyD88) genes associated with the TLR4 signal mechanism was markedly reduced by the addition of quercetin to LPS-modulated BIECs, indicating that quercetin can suppress the TLR4 signal mechanism. We performed Western blotting on the NF-κB signalling mechanism and compared it with immunofluorescence to further corroborate this conclusion. The LPS treatment enhanced the proportions of p-IκBα/GAPDH and p-p65/GAPDH. Compared with the LPS-treated group, quercetin administration decreased the proportions of p-IκBα/GAPDH and p-p65/GAPDH. In addition, immunofluorescence demonstrated that quercetin greatly reduced the LPS-induced nuclear translocation of NF-κB p65 in BIECs. The benefits of quercetin on inflammatory reactions in LPS-induced BIECs may be a result of its capacity to inhibit the TLR4-mediated NF-κB signalling mechanism. These findings suggest that quercetin can be used as an anti-inflammatory reagent to treat intestinal inflammation induced by LPS release.

4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232925

RESUMEN

Vibrio harveyi is one of the most serious bacterial pathogens to aquatic animals worldwide. Evidence is mounting that coinfections caused by multiple pathogens are common in nature and can alter the severity of diseases in marine animals. However, bacterial coinfections involving V. harveyi have received little attention in mariculture. In this study, the results of pathogen isolation indicated that bacterial coinfection was a common and overlooked risk for hybrid groupers (♀ Epinephelus polyphekadion × â™‚ E. fuscoguttatus) reared in an industrialized flow-through pattern in Hainan Province. The artificial infection in hybrid groupers revealed that coinfections with V. harveyi strain GDH11385 (a serious lethal causative agent to groupers) and other isolated pathogens resulted in higher mortality (46.67%) than infection with strain GDH11385 alone (33.33%), whereas no mortality was observed in single infection with other pathogens. Furthermore, the intestine, liver and spleen of hybrid groupers are target organs for bacterial coinfections involving V. harveyi. Based on the infection patterns found in this study, we propose that V. harveyi may have a specific spatiotemporal expression pattern of virulence genes when infecting the host. Taken together, bacterial coinfection with V. harveyi is a neglected high-risk lethal causative agent to hybrid groupers in the industrialized flow-through aquaculture systems in Hainan Province.


Asunto(s)
Lubina , Coinfección , Enfermedades de los Peces , Vibriosis , Vibrio , Animales , Acuicultura , Lubina/genética , Coinfección/veterinaria , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/microbiología , Prevalencia , Vibrio/genética , Vibriosis/epidemiología , Vibriosis/microbiología , Vibriosis/veterinaria
5.
Mol Cancer ; 19(1): 39, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32103754

RESUMEN

Ferroptosis, a novel form of regulated cell death, is different from other types of cell death in morphology, genetics and biochemistry. Increasing evidence indicates that ferroptosis has significant implications on cell death linked to cardiomyopathy, tumorigenesis, and cerebral hemorrhage to name a few. Here we summarize current literature on ferroptosis, including organelle dysfunction, signaling transduction pathways, metabolic reprogramming and epigenetic regulators in cancer progression. With regard to organelles, mitochondria-induced cysteine starvation, endoplasmic reticulum-related oxidative stress, lysosome dysfunction and golgi stress-related lipid peroxidation all contribute to induction of ferroptosis. Understanding the underlying mechanism in ferroptosis could provide insight into the treatment of various intractable diseases including cancers.


Asunto(s)
Estrés del Retículo Endoplásmico , Epigénesis Genética , Ferroptosis , Mitocondrias/patología , Neoplasias/patología , Animales , Transporte Biológico , Humanos , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Especies Reactivas de Oxígeno , Transducción de Señal
6.
Biotechnol Lett ; 41(8-9): 1077-1091, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31236789

RESUMEN

OBJECTIVES: 3-Hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase (HMGS) is an important enzyme in mevalonate (MVA) pathway of isoprenoid biosynthesis, which regulates the rubber biosynthetic pathway in rubber tree (Hevea brasiliensis) in coordination with HMG-CoA reductase (HMGR). However, little information is available about the regulation of HMGS gene expression. To understand the mechanism controlling the HbHMGS1 gene expression, we characterized the HbHMGS1 promoter sequence in transgenic plants with the ß-glucuronidase (GUS) reporter gene. RESULTS: GUS activity analysis of the transgenic plants showed that the HbHMGS1 promoter is active in all organs of the transgenic Arabidopsis plants during various developmental stages (from 6 to 45-day-old). Deletion of different portions of the upstream HbHMGS1 promoter identified sequences responsible for either positive or negative regulation of the GUS expression. Particularly, the - 454 bp HbHMGS1 promoter resulted in a 2.19-fold increase in promoter activity compared with the CaMV 35S promoter, suggesting that the - 454 bp HbHMGS1 promoter is a super-strong near-constitutive promoter. In addition, a number of promoter regions important for the responsiveness to ethylene, methyl jasmonate (MeJA) and gibberellic acid (GA) were identified. CONCLUSION: The - 454 bp HbHMGS1 promoter has great application potential in plant transformation studies as an alternative to the CaMV 35S promoter. The HbHMGS1 promoter may play important roles in regulating ethylene-, MeJA- and GA-mediated gene expression. The functional complexity of cis-elements revealed by this study remains to be elucidated.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hevea/enzimología , Hidroximetilglutaril-CoA Sintasa/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Secuencias Reguladoras de Ácidos Nucleicos , Análisis Mutacional de ADN , Perfilación de la Expresión Génica , Hevea/genética , Hidroximetilglutaril-CoA Sintasa/biosíntesis , Proteínas de Plantas/biosíntesis , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Eliminación de Secuencia
7.
Drugs ; 84(2): 179-202, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265546

RESUMEN

Coronary heart disease (CHD) is a common type of cardiovascular disease (CVD) that has been on the rise in terms of both incidence and mortality worldwide, presenting a significant threat to human health. An increasing body of studies has shown that traditional Chinese medicine (TCM), particularly Chinese herbal medicines (CHMs), can serve as an effective adjunctive therapy to enhance the efficacy of Western drugs in treating CHD due to their multiple targets and multiple pathways. In this article, we critically review data available on the potential therapeutic strategies of CHMs in the intervention of CHD from three perspectives: clinical evidence, pharmacological mechanisms, and the interaction with gut microbiota. We identified 20 CHMs used in clinical practice and it has been found that the total clinical effective rate of CHD patients improved on average by 17.78% with the intervention of these CHMs. Subsequently, six signaling pathways commonly used in treating CHD have been identified through an overview of potential pharmacological mechanisms of these 20 CHMs and the eight representative individual herbs selected from them. CHMs could also act on gut microbiota to intervene in CHD by modulating the composition of gut microbiota, reducing trimethylamine-N-oxide (TMAO) levels, increasing short-chain fatty acids (SCFAs), and maintaining appropriate bile acids (BAs). Thus, the therapeutic potential of CHMs for CHD is worthy of further study in view of the outcomes found in existing studies.


Asunto(s)
Enfermedad Coronaria , Medicamentos Herbarios Chinos , Microbioma Gastrointestinal , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicina Tradicional China , Enfermedad Coronaria/tratamiento farmacológico , Resultado del Tratamiento
8.
Int J Biol Macromol ; 273(Pt 1): 133087, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871109

RESUMEN

Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multifaceted beneficial functions. Furthermore, the abundant starch and resistant starch (RS) content in yam can fulfil the market demand for RS. The inherent and modified properties of yam starch and RS make them versatile ingredients for a wide range of food products, with the potential to become one of the most cost-effective raw materials in the food industry. In recent years, research on yam RS has experienced progressive expansion. This article provides a comprehensive summary of the latest research findings on yam starch and its RS, elucidating the feasibility of commercial RS production and the technology's impact on the physical and chemical properties of starch. Yam has emerged as a promising reservoir of tuber starch for sustainable RS production, with thermal, chemical, enzymatic and combination treatments proving to be effective manufacturing procedures for RS. The adaptability of yam RS allows for a wide range of food applications.


Asunto(s)
Dioscorea , Almidón , Dioscorea/química , Almidón/química , Tubérculos de la Planta/química , Almidón Resistente , Valor Nutritivo
9.
J Ethnopharmacol ; 330: 118179, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic nephropathy (DN) is a typical chronic microvascular complication of diabetes, characterized by proteinuria and a gradual decline in renal function. At present, there are limited clinical interventions aimed at preventing the progression of DN to end-stage renal disease (ESRD). However, Chinese herbal medicine presents a distinct therapeutic approach that can be effectively combined with conventional Western medicine treatments to safeguard renal function. This combination holds considerable practical implications for the treatment of DN. AIM OF THE STUDY: This review covers commonly used Chinese herbal remedies and decoctions applicable to various types of DN, and we summarize the role played by their active ingredients in the treatment of DN and their mechanisms, which includes how they might improve inflammation and metabolic abnormalities to provide new ideas to cope with the development of DN. MATERIALS AND METHODS: With the keywords "diabetic nephropathy," "Chinese herbal medicine," "clinical effectiveness," and "bioactive components," we conducted an extensive literature search of several databases, including PubMed, Web of Science, CNKI, and Wanfang database, to discover studies on herbal formulas that were effective in slowing the progression of DN. The names of the plants covered in the review have been checked at MPNS (http://mpns.kew.org). RESULTS: This review demonstrates the superior total clinical effective rate of combining Chinese herbal medicines with Western medicines over the use of Western medicines alone, as evidenced by summarizing the results of several clinical trials. Furthermore, the review highlights the nephroprotective effects of seven frequently used herbs exerting beneficial effects such as podocyte repair, anti-fibrosis of renal tissues, and regulation of glucose and lipid metabolism through multiple signaling pathways in the treatment of DN. CONCLUSIONS: The potential of herbs in treating DN is evident from their excellent effectiveness and the ability of different herbs to target various symptoms of the condition. However, limitations arise from the deficiencies in interfacing with objective bioindicators, which hinder the integration of herbal therapies into modern medical practice. Further research is warranted to address these limitations and enhance the compatibility of herbal therapies with contemporary medical standards.


Asunto(s)
Nefropatías Diabéticas , Medicamentos Herbarios Chinos , Nefropatías Diabéticas/tratamiento farmacológico , Humanos , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Animales , Medicina Tradicional China/métodos , Fitoterapia
10.
J Colloid Interface Sci ; 661: 720-729, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38320408

RESUMEN

Controlling the formation of single-atom (SA) sites from supported metal clusters is an important and interesting issue to effectively improve the catalytic performance of heterogeneous catalysts. For extensively studied CO oxidation over metal/CeO2 systems, the SA formation and stabilization under reaction conditions is generally attributed to CO adsorption, however, the pivotal role played by the reducible CeO2 support and the underlying electronic metal-support interaction (EMSI) are not yet fully understood. Based on a ceria-supported Cu10 catalyst model, we performed density functional theory calculations to investigate the intrinsic SA formation mechanism and discussed the synergistic effect of Gd-doped CeO2 and CO adsorption on the SA formation. The CeO2 reducibility is tuned with doped Gd content ranging from 12.5 % ∼ 25 %. Based on ab initio thermodynamic and ab initio molecular dynamics, the critical condition for SA formation was identified as 21.875 % Gd-doped CeO2 with CO-saturated adsorption on Cu10. Electronic analysis revealed that the open-shell lattice Oδ- (δ < 2) generated by Gd doping facilitates the charge transfer from the bottom-corner Cu (Cubc) to CeO2. The CO-saturated adsorption further promotes this charge transfer process and enhances the EMSI between Cubc and CeO2, leading to the disintegration of Cubc from Cu10 and subsequent formation of the active SA site.

11.
Int Immunopharmacol ; 127: 111332, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38071913

RESUMEN

BACKGROUND: The inhibitory effect of γδT17 cells on the formation of murine malignant pleural effusions (MPE) has been established. However, there is limited understanding regarding the phenotypic characterization of γδ T cells in MPE patients and their recruitment to the pleural cavity. METHODS: We quantified γδ T cell prevalence in pleural effusions and corresponding peripheral blood from malignant and benign patients using immunohistochemistry and flow cytometry. The expression of effector memory phenotype, stimulatory/inhibitory/chemokine receptors and cytokines on γδ T cells in MPE was analyzed using multicolor flow cytometry. The infiltration of γδ T cells in MPE was assessed through immunofluorescence, ELISA, flow cytometry and transwell migration assay. RESULTS: We observed a significant infiltration of γδ T cells in MPE, surpassing the levels found in blood and benign pleural effusion. γδ T cells in MPE exhibited heightened expression of CD56 and an effector memory phenotype, while displaying lower levels of PD-1. Furthermore, γδ T cells in MPE showed higher levels of cytokines (IFN-γ, IL-17A and IL-22) and chemokine receptors (CCR2, CCR5 and CCR6). CCR2 expression was notably higher in the Vδ2 subtype compared to Vδ1 cells. Moreover, the complement C5a enhanced cytokine release by γδ T cells, upregulated CCR2 expression in Vδ2 subsets, and stimulated the production of chemokines (CCL2, CCL7 and CCL20) in MPE. In vitro utilizing CCR2 neutralising and C5aR antagonist significantly reduced the recruitment of γδ T cells. CONCLUSIONS: γδ T cells infiltrate MPE by overexpressing CCR2 and exhibit hightened inflammation, which is further augmented by C5a.


Asunto(s)
Derrame Pleural Maligno , Derrame Pleural , Animales , Humanos , Ratones , Quimiotaxis , Citocinas , Inflamación , Derrame Pleural Maligno/patología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Receptores de Quimiocina , Complemento C5a/metabolismo
12.
Front Psychol ; 14: 1104349, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008843

RESUMEN

The rapid development of livestreaming commerce has received widespread attention from both theoretical and practical circles. However, relatively few studies have been conducted from a product perspective, and even fewer studies have analyzed product characteristics influencing consumers' impulse buying based on product-involvement theory. Grounded on product involvement theory, this study proposed a theoretical research model and empirically tested the model using online survey data collected from 504 livestreaming consumers in China. The results showed that functional value for money, perceived product quality, perceived product scarcity, instant feedback on product information, and perceived product knowledge of streamers can drive product cognitive and affective involvement, which, in turn, induce the consumer-felt urge to buy impulsively and engage in impulse buying behavior. However, the functionality of product design can only affect the product cognitive involvement, not the affective involvement. Implications for research and practice are discussed.

13.
Front Microbiol ; 14: 1258415, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808288

RESUMEN

The biofilm lifestyle is critical for bacterial survival and proliferation in the fluctuating marine environment. Cyclic diguanylate (c-di-GMP) is a key second messenger during bacterial adaptation to various environmental signals, which has been identified as a master regulator of biofilm formation. However, little is known about whether and how c-di-GMP signaling regulates biofilm formation in Vibrio alginolyticus, a globally dominant marine pathogen. Here, a large set of 63 proteins were predicted to participate in c-di-GMP metabolism (biosynthesis or degradation) in a pathogenic V. alginolyticus strain HN08155. Guided by protein homology, conserved domains and gene context information, a representative subset of 22 c-di-GMP metabolic proteins were selected to determine which ones affect biofilm-associated phenotypes. By comparing phenotypic differences between the wild-type and mutants or overexpression strains, we found that 22 c-di-GMP metabolic proteins can separately regulate different phenotypic outputs in V. alginolyticus. The results indicated that overexpression of four c-di-GMP metabolic proteins, including VA0356, VA1591 (CdgM), VA4033 (DgcB) and VA0088, strongly enhanced rugose colony morphotypes and strengthened Congo Red (CR) binding capacity, both of which are indicators of biofilm matrix overproduction. Furthermore, rugose enhanced colonies were accompanied by increased transcript levels of extracellular polysaccharide (EPS) biosynthesis genes and decreased expression of flagellar synthesis genes compared to smooth colonies (WTpBAD control), as demonstrated by overexpression strains WTp4033 and ∆VA4033p4033. Overall, the high abundance of c-di-GMP metabolic proteins in V. alginolyticus suggests that c-di-GMP signaling and regulatory system could play a key role in its response and adaptation to the ever-changing marine environment. This work provides a robust foundation for the study of the molecular mechanisms of c-di-GMP in the biofilm formation of V. alginolyticus.

14.
Front Cell Infect Microbiol ; 13: 1265917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38076457

RESUMEN

Vibrio alginolyticus, one of the prevalently harmful Vibrio species found in the ocean, causes significant economic damage in the shrimp farming industry. Its flagellum serves as a crucial virulence factor in the invasion of host organisms. However, the processes of bacteria flagella recognition and activation of the downstream immune system in shrimp remain unclear. To enhance comprehension of this, a ΔflhG strain was created by in-frame deletion of the flhG gene in V. alginolyticus strain HN08155. Then we utilized the transcriptome analysis to examine the different immune responses in Litopenaeus vannamei hepatopancreas after being infected with the wild type and the mutant strains. The results showed that the ΔflhG strain, unlike the wild type, lost its ability to regulate flagella numbers negatively and displayed multiple flagella. When infected with the hyperflagella-type strain, the RNA-seq revealed the upregulation of several immune-related genes in the shrimp hepatopancreas. Notably, two C-type lectins (CTLs), namely galactose-specific lectin nattectin and macrophage mannose receptor 1, and the TNF receptor-associated factor (TRAF) 6 gene were upregulated significantly. These findings suggested that C-type lectins were potentially involved in flagella recognition in shrimp and the immune system was activated through the TRAF6 pathway after flagella detection by CTLs.


Asunto(s)
Hepatopáncreas , Vibrio alginolyticus , Animales , Vibrio alginolyticus/genética , Inmunidad Innata/genética , Perfilación de la Expresión Génica , Flagelos/genética , Lectinas Tipo C/genética
15.
Front Immunol ; 14: 1073884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36820087

RESUMEN

Background and aims: Complement activation is essential for tuberculosis pleural effusion. However, little is known about the value of complement regulatory protein (CD46, CD55, and CD59) in the differential diagnosis of tuberculosis. Materials and methods: Ninety-nine patients with exudative pleural effusion admitted to Xiangya Hospital of Central South University from June 1, 2021to November 14, 2022 were enrolled. The expression levels of soluble CD46 (sCD46), soluble CD55 (sCD55), and soluble CD59 (sCD59) in pleural effusion were quantified by enzyme-linked immunosorbent assay, and the receiver operating characteristic (ROC) curves were plotted to evaluate the diagnostic and co-diagnostic values. Results: The ADA level is higher in TPE patients than non-TPE patients. It is well-found that TPE patients had lower levels of sCD46, sCD55, and sCD59 compared with non-TPE patients. Moreover, the expression of sCD46, sCD55, and sCD59 in pleural effusion was negatively correlated with ADA. In addition, the diagnostic efficacy of sCD46, sCD55 and sCD59 was comparable to that of ADA, with 0.896, 0.857, 0.858 and 0.893, respectively. Furthermore, combine detection of sCD46, sCD55, sCD59 and ADA could improve the diagnostic accuracy. Conclusions: Complement regulatory factors (CD46, CD55, and CD59) were validated by this project to be promising candidate biomarkers for the diagnosis of TPE with high accuracy. The combination of the CD46, CD55, and CD59 and ADA assay exist a better diagnostic value in TPE.


Asunto(s)
Derrame Pleural , Tuberculosis Pleural , Humanos , Tuberculosis Pleural/diagnóstico , Adenosina Desaminasa/metabolismo , Biomarcadores/metabolismo , Derrame Pleural/diagnóstico , Curva ROC , Proteínas del Sistema Complemento
16.
Front Psychol ; 13: 745259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35478733

RESUMEN

Based on the transaction theory of stress and the theory of resource conservation, which introduces knowledge acquisition and intrinsic motivation as mediating variables, a chain mediating model for the influence of challenge-hindrance stress on innovation performance is constructed. Data of 295 samples collected in three stages were used to testify hypothesis. The results confirmed a positive relationship between challenge stress and innovation performance, and a negative relationship between hindrance stress and innovation performance. Intrinsic motivation and knowledge acquisition play a parallel and chain mediating role in the relationship between challenge-hindrance stress and innovation performance. These findings contribute to a deeper understanding of how challenge -hindrance stress affects innovation performance and provide important practical guidance for improving innovation performance.

17.
Front Psychol ; 13: 988585, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36237699

RESUMEN

With rising consumption and environmental problems, there is an increasing need for green consumption. From a micro perspective, the influence of environmental cognition on consumers' green consumption behaviors and the related mechanisms are examined through multilayer linear analysis and 2010 China General Social Survey (CGSS) microdata with the theory of planned behavior (TPB) as the model framework. The study shows that (1) environmental cognition positively influences attitudes toward green consumption, green consumption subjective norms, and green consumption perceived behavioral control, which leads to increased intentions to engage in green consumption and actual green consumption behaviors. Environmental cognition can either promote the intention toward and lead to green consumption behavior or directly promote green consumption behavior. (2) The more developed a region's economy is, the stronger people's attitudes toward green consumption will be; additionally, the greater the perceived external pressure to engage in green consumption becomes, the greater the likelihood that people will develop the intention to engage in green consumption behavior. Regional environmental quality inhibits green consumption intention to a certain extent. (3) The influence of environmental cognition on green consumption shows regional heterogeneity.

18.
Animals (Basel) ; 12(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35739854

RESUMEN

In the context of global restrictions on the use of antibiotics, there has been increased research on natural plant-based ingredients as additives. It has been proved that many natural active ingredients contained in plants have positive effects on animal growth regulation. Artemisia argyi (A. argyi) is a traditional Chinese herbal medicine, and its extracts have been reported to have a variety of biological activities. Therefore, in order to explore the potential of the active extract of Artemisia argyi leaves (ALE) as a plant source additive, mice were fed with ALE at different concentrations for 60 days. Finally, the effects of ALE were evaluated by the growth indexes, blood indexes, and intestinal microflora changes of the mice. It was found that a medium concentration of ALE (150 mg/kg) could promote growth, and especially improved the feed efficiency of the mice. However, high concentrations of ALE (300 mg/kg) had some negative effects on the growth of mice, especially liver damage, which significantly increased AST and ALT levels in the blood. Therefore, the 150 mg/kg ALE treatment group was selected for 16S rDNA analysis. It was found that ALE could play a positive role by regulating the proportion of Bacteroidetes and Firmicutes in the intestinal tract. In particular, it can significantly up-regulate the quantities of Akkermansia and Bifidobacterium. These results suggest that ALE at appropriate concentrations can positively regulate animal growth.

19.
Animals (Basel) ; 12(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35454282

RESUMEN

Twenty-four healthy castrated male Holstein growing cattle, with similar body weight (301 ± 11.5 kg), were enrolled in this study and randomly allocated into two groups (12/pen). Holstein growing cattle in the LPT (low NFC/NDF pelleted TMR) group were fed basal pelleted TMR with a low NFC/NDF ratio (NFC/NDF = 1.07), while the HPT (high NFC/NDF pelleted TMR) group were fed with a high NFC/NDF ratio diet (NFC/NDF = 1.71). The results showed that: (1) Body measurements were found to be increased for the LPT group (p < 0.05); compared with the HPT group, feed intake to gain ratio and feed cost in the LPT group were decreased by 12.24% and 15.35%, respectively (p < 0.01). Compared with the HPT group, the LPT group tended to increase chest girth. (2) Digestibility of DM and NDF in the LPT group was higher (p < 0.05) than in the HPT group, being increased by 3.41% and 4.26%, respectively, and increased digestibility of ADF in the LPT group was significant (p < 0.01). (3) The daily feed consumption of NDF in the LPT group was higher than that in the HPT group and the daily rumination time and chewing time in the LPT group were longer than that in the HPT group (p < 0.05). (4) Compared with the LPT group, the parameter of pH, microbial protein and acetate: propionate (p < 0.05) in the HPT group were decreased by 8.57%, 12.46% and 23.71%, respectively. In contrast, the concentration of total volatile fatty acids, acetate and propionate were higher (p < 0.05) in the HPT group, and increased by 13.49%, 19.59% and 52.70%, respectively. (5) Compared with the LPT group, rumen fluid in the HPT group diet up-regulated the mRNA expression levels of BRECs pro-inflammatory factor IL-1ß and TNF-α (p < 0.05), and meanwhile, up-regulated the mRNA expression levels of BRECs pro-inflammatory factor IL-6 (p < 0.01); compared with the LPT group, rumen fluid in the HPT group diet up-regulated the mRNA expression levels of CCL28 and CCL20 (p < 0.05) chemokines in CCL types of BRECs; in addition, compared with the LPT group, rumen fluid in the HPT group up-regulated the mRNA expression levels of CXCL2, CXCL3, CXCL9 and CXCL14 chemokines in CXCL types of BRECs (p < 0.01), and the mRNA expression levels of the CXCL5 chemokine tended to be increased (p = 0.06).

20.
Front Nutr ; 9: 841800, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35558744

RESUMEN

The aim of this study was to evaluate the effects of buffalo milk and cow milk on lipid metabolism in obese mice. Milk composition analysis showed fat, protein, and total solid content in buffalo milk was higher than cow milk, while the lactose content of buffalo milk was lower than cow milk. After milk metabolite extraction and LC-MS/MS analysis, differential metabolites were mainly enriched in "linoleic acid metabolism pathways," "pentose and glucuronate interconversion pathways," and "metabolism of xenobiotics by cytochrome P450 pathways." We fed three groups of C57BL/6J mice (n = 6 per group) for 5 weeks: (1) high-fat diet group (HFD group); (2) high-fat diet + buffalo milk group (HBM group); and (3) high-fat diet + cow milk group (HCM group). Our results showed that body weight of mice was significantly decreased in HBM and HCM groups from 1 to 4 weeks compared with the HFD group. The mRNA expression of ACAA2, ACACB, and SLC27A5 genes involved in the lipid metabolism in liver tissue were significantly elevated in HCM group, relatively to HFD and HBM group. In addition, the adipocyte number, size and lipid accumulation in the liver were significantly decreased in HCM group compared with the HFD group by H&E staining and oil red O staining, but was not change in HBM group. The mRNA levels of TNF-α and IL-1ß inflammatory genes were significantly increased in HBM group, relatively to HFD and HCM group, which is consistent with results from inflammatory cell infiltration and tissue disruption by colon tissue sections. In conclusion, dietary supplementation of cow milk has beneficial effects on loss of weight and lipid metabolism in obese mice.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda