Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Drug Metab Dispos ; 52(9): 988-996, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38997155

RESUMEN

P2Y12 receptor inhibitors are commonly used in clinical antiplatelet therapy, typically alongside other medications. Vicagrel, a promising P2Y12 receptor inhibitor, has submitted a new drug marketing application to the United States Food and Drug Administration. Its primary metabolites and some metabolic pathways are identical to those of clopidogrel. The aim of this study was to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine (DCMB) on the metabolism and pharmacokinetics of vicagrel. In vitro incubation with human and rat liver microsomes revealed that DCMB significantly inhibited the methylation of vicagrel's thiol metabolite M15-1. Rats were orally administered 6 mg/kg [14C]vicagrel (100 µCi/kg) 1 hour after peritoneal injection with or without DCMB (80 mg/kg). Compared with the control group, the plasma of DCMB-pretreated rats exhibited maximum plasma concentration (C max) decrease and time to reach C max (T max) delay for all vicagrel-related substances, the methylation product of the thiol metabolite (M9-2), and the derivatization product of the active thiol metabolite (MP-M15-2). However, no significant changes in area under the curve (AUC) or half-life (t 1/2) were observed. DCMB had negligible effect on the total radiological recovery of vicagrel within 72 hours, although the rate of vicagrel excretion slowed down within 48 hours. DCMB had a negligible impact on the metabolic pathway of vicagrel. Overall, the present study found that DCMB did not significantly affect the total exposure, metabolic pathways, metabolite profiles, or total excretion rates of vicagrel-related metabolites in rats, but led to C max decrease, T max delay, and slower excretion rate within 48 hours. SIGNIFICANCE STATEMENT: This study used liquid chromatography-tandem mass spectrometry combined with radiolabeling technology to investigate the effects of the thiol methyltransferase inhibitor (±)-2,3-dichloro-α-methylbenzylamine on the absorption, metabolism, and excretion of vicagrel in rats. This work helps to better understand the in vivo metabolism of active thiol metabolites of P2Y12 inhibitors such as clopidogrel, vicagrel, etc.


Asunto(s)
Metiltransferasas , Microsomas Hepáticos , Ratas Sprague-Dawley , Animales , Ratas , Masculino , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Bencilaminas/farmacocinética , Bencilaminas/farmacología , Metilación , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/farmacocinética , Tiofenos/farmacocinética , Tiofenos/farmacología , Interacciones Farmacológicas , Fenilacetatos
2.
Biochem Cell Biol ; 101(1): 52-63, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542845

RESUMEN

Metabolic syndrome (MetS) represents a cluster of diseases that includes diabetes and insulin resistance. A combination of these metabolic disorders damages liver function. We hypothesized here that histone deacetylase 1 (HDAC1) inhibits fibroblast growth factor 21 (FGF21) expression through histone deacetylation, thereby accentuating liver injury in rats with MetS. MetS rats induced by a high-fat diet were monitored weekly for blood pressure and body weight measurement. The changes of hepatic injury parameters were also measured. The pathological changes in the liver were observed by HE staining and oil red O staining. We found that HDAC1 was increased in the liver of rats with MetS, while sh-HDAC1 reduced blood pressure, body weight, and hepatic injury parameters. Improvement of structural pathological alterations and reduction of lipid deposition were observed after HDAC1 inhibition. Notably, HDAC1 inhibited FGF21 expression through histone deacetylation. The hepatoprotective effects of sh-HDAC1 on rats were reversed by adenovirus-mediated knockdown of FGF21. Moreover, methyltransferase-like 3 (METTL3) mediated the N6-methyladenosine (m6A) modification of HDAC1 mRNA and increased its binding to IGF2BP2. Consistently, sh-METTL3 inhibited HDAC1 and increased FGF21 expression, thereby ameliorating liver injury in MetS rats. This study discovered that HDAC1 is capable of managing liver injury in MetS. Targeting HDAC1 may be an optimal treatment for MetS-related liver injury.


Asunto(s)
Síndrome Metabólico , Animales , Ratas , Peso Corporal , Histona Desacetilasa 1/genética , Histonas/metabolismo , Hígado/metabolismo , Síndrome Metabólico/metabolismo
3.
Biochem Biophys Res Commun ; 594: 38-45, 2022 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-35066378

RESUMEN

Recent studies have emphasized the role of vascular adventitia inflammation and immune response in hypertension. It has been reported that stromal cell-derived factor-1 (SDF-1) plays various biological functions through its receptors C-X-C motif chemokine receptor 4 (CXCR4) and CXCR7 in tumor growth and tissue repair. However, it is unclear that whether SDF-1/CXCR4/CXCR7 axis is involved in hypertensive vascular remodeling. In the present study, the involvement of SDF-1/CXCR4/CXCR7 axis was evaluated with lentivirus-mediated shRNA of SDF-1 and CXCR7, CXCR4 antagonist AMD3100 and CXCR7 agonist VUF11207 in angiotensin II (AngII)-induced hypertensive mice and in cultured adventitial fibroblasts (AFs). Results showed that AngII infusion markedly increased SDF-1 expressed in vascular adventitia, but not in media and endothelium. Importantly, blockade of SDF-1/CXCR4 axis strikingly potentiated AngII-induced adventitial thickening and fibrosis, as indicated by enhanced collagen I deposition. In contrast, CXCR7 shRNA largely attenuated AngII-induced adventitial thickness and fibrosis, whereas CXCR7 activation with VUF11207 significantly potentiated AngII-induced adventitial thickening and fibrosis. In consistent with these in vivo study, CXCR4 inhibition with AMD3100 and CXCR7 activation with VUF11207 aggravated AngII-induced inflammation, proliferation and migration in cultured AFs. In summary, these results suggested that SDF-1 exerted opposing effects through CXCR4 and CXCR7 in AngII-induced vascular adventitial remodeling.


Asunto(s)
Adventicia/metabolismo , Angiotensina II/metabolismo , Quimiocina CXCL12/metabolismo , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Animales , Bencilaminas/farmacología , Movimiento Celular/fisiología , Proliferación Celular , Colágeno/metabolismo , Ciclamas/farmacología , Modelos Animales de Enfermedad , Fibroblastos/patología , Fibrosis , Hipertensión/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Cicatrización de Heridas
4.
Acta Pharmacol Sin ; 42(9): 1535-1546, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33244163

RESUMEN

Vicagrel, a novel irreversible P2Y12 receptor inhibitor, is undergoing phase III trials for the treatment of acute coronary syndromes in China. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of vicagrel in six healthy male Chinese subjects after a single oral dose of 20 mg [14C]vicagrel (120 µCi). Vicagrel absorption was fast (Tmax = 0.625 h), and the mean t1/2 of vicagrel-related components was ~38.0 h in both plasma and blood. The blood-to-plasma radioactivity AUCinf ratio was 0.55, suggesting preferential distribution of drug-related material in plasma. At 168 h after oral administration, the mean cumulative excreted radioactivity was 96.71% of the dose, including 68.03% in urine and 28.67% in feces. A total of 22 metabolites were identified, and the parent vicagrel was not detected in plasma, urine, or feces. The most important metabolic spot of vicagrel was on the thiophene ring. In plasma pretreated with the derivatization reagent, M9-2, which is a methylated metabolite after thiophene ring opening, was the predominant drug-related component, accounting for 39.43% of the radioactivity in pooled AUC0-8 h plasma. M4, a mono-oxidation metabolite upon ring-opening, was the most abundant metabolite in urine, accounting for 16.25% of the dose, followed by M3-1, accounting for 12.59% of the dose. By comparison, M21 was the major metabolite in feces, accounting for 6.81% of the dose. Overall, renal elimination plays a crucial role in vicagrel disposition, and the thiophene ring is the predominant metabolic site.


Asunto(s)
Fenilacetatos/metabolismo , Fenilacetatos/farmacocinética , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Tiofenos/metabolismo , Tiofenos/farmacocinética , Administración Oral , Adulto , Clopidogrel , Humanos , Masculino , Fenilacetatos/sangre , Fenilacetatos/química , Antagonistas del Receptor Purinérgico P2Y/sangre , Antagonistas del Receptor Purinérgico P2Y/química , Tiofenos/sangre , Tiofenos/química
5.
Br J Clin Pharmacol ; 86(9): 1860-1874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32267573

RESUMEN

AIMS: We investigated the impacts of CYP2C19 polymorphisms on pharmacokinetics and pharmacodynamics of vicagrel in healthy Chinese subjects. METHODS: CYP2C19 extensive metabolizers (EMs), intermediate metabolizers (IMs) and poor metabolizers (PMs; 16 subjects/group) participated in a randomized, open-label, 2-period cross-over study. Each study period lasted 7 days, with a loading dose of 24 mg of vicagrel or 300 mg of clopidogrel on day 1, and maintenance doses of 6 mg of vicagrel or 75 mg of clopidogrel daily from day 2 to day 7. The pharmacokinetics and pharmacodynamics were assessed on day 1 and day 7. RESULTS: After a loading dose, the AUC0-t of the active metabolite H4 by vicagrel was slightly lower in IMs and PMs (decreased by 21 and 27%, respectively) compared to EMs. Similar results were found after maintenance doses. In EMs, the AUC0-t of H4 by vicagrel was somewhat higher than clopidogrel after the loading dose, and comparable with clopidogrel (90% confidence interval 0.94, 1.21) after the maintenance doses. However, it was much higher than clopidogrel in PMs, with a 1.28-fold (loading dose) and a 73% (maintenance doses) increases compared to clopidogrel (P < 0.001). Consequently, the inhibition of platelet aggregation by vicagrel was greater than clopidogrel after both loading dose (28.2 vs 12.4% at 4 hours, P < 0.01) and maintenance doses (42.8 vs 24.6% at 4 hours, P < 0.001) in PMs. CONCLUSIONS: CYP2C19 polymorphisms have less impact on vicagrel as compared to clopidogrel. Drug exposure and response to vicagrel in PMs were even higher than to clopidogrel in IMs.


Asunto(s)
Citocromo P-450 CYP2C19/genética , Fenilacetatos/farmacología , Tiofenos/farmacología , Disponibilidad Biológica , Estudios Cruzados , Femenino , Humanos , Masculino , Agregación Plaquetaria/efectos de los fármacos , Inhibidores de Agregación Plaquetaria/farmacología , Polimorfismo Genético , Ticlopidina/farmacología
7.
Bioorg Med Chem ; 22(4): 1383-93, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24457090

RESUMEN

All eight stereoisomers of saxagliptin have been synthesized and evaluated for their inhibitory activity against DPP-IV. It was unambiguously confirmed that the configuration of saxagliptin was critical to potent inhibition of DPP-IV. Docking study was performed to elucidate the configuration-activity relationship of saxagliptin stereoisomers. Tyr662 and Tyr470 have been suggested as the key residues of DPP-IV interacting with the inhibitors. This work provides valuable information for further inhibitor design against DPP-IV.


Asunto(s)
Adamantano/análogos & derivados , Dipéptidos/química , Dipeptidil Peptidasa 4/metabolismo , Adamantano/síntesis química , Adamantano/química , Adamantano/farmacología , Sitios de Unión , Dominio Catalítico , Dipéptidos/síntesis química , Dipéptidos/farmacología , Dipeptidil Peptidasa 4/química , Inhibidores de la Dipeptidil-Peptidasa IV/síntesis química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Activación Enzimática/efectos de los fármacos , Simulación del Acoplamiento Molecular , Unión Proteica , Estereoisomerismo , Relación Estructura-Actividad
8.
Eur J Med Chem ; 265: 116120, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38194776

RESUMEN

The advent of small molecule modulators targeting the cystic fibrosis transmembrane conductance regulator (CFTR) has revolutionized the treatment of persons with cystic fibrosis (CF) (pwCF). Presently, these small molecule CFTR modulators have gained approval for usage in approximately 90 % of adult pwCF. Ongoing drug development endeavors are focused on optimizing the therapeutic benefits while mitigating potential adverse effects associated with this treatment approach. Based on their mode of interaction with CFTR, these drugs can be classified into two distinct categories: specific CFTR modulators and non-specific CFTR modulators. Specific CFTR modulators encompass potentiators and correctors, whereas non-specific CFTR modulators encompass activators, proteostasis modulators, stabilizers, reader-through agents, and amplifiers. Currently, four small molecule modulators, all classified as potentiators and correctors, have obtained marketing approval. Furthermore, numerous novel small molecule modulators, exhibiting diverse mechanisms of action, are currently undergoing development. This review aims to explore the classification, mechanisms of action, molecular structures, developmental processes, and interrelationships among small molecule CFTR modulators.


Asunto(s)
Fibrosis Quística , Quinolonas , Adulto , Humanos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Desarrollo de Medicamentos , Quinolonas/farmacología , Aminopiridinas , Mutación
9.
Sheng Wu Gong Cheng Xue Bao ; 40(2): 337-349, 2024 Feb 25.
Artículo en Zh | MEDLINE | ID: mdl-38369825

RESUMEN

Inflammasomes are innate immune sensors and receptors that play key pathological roles in the development and progression of numerous diseases. Recent studies have shown that NLRP3 inflammasomes are critical in the pathology of diseases with a high impact on public health, such as musculoskeletal disorders. Musculoskeletal disorders, mainly caused or aggravated by work and the surrounding environment, are locomotor system disorders such as muscles, joints, bones, as well as diseases associated with neurological and circulatory system injuries. Activation of NLRP3 inflammasomes can induce inflammation and pyroptosis, leading to further bodily harm. Therefore, investigating the mechanism and function of NLRP3 inflammasomes, holds great significance and importance for the prevention and treatment of musculoskeletal disorders. This review provides a summary of the activation pathway and mechanism of NLRP3 inflammasomes, and analyzes the role in musculoskeletal disorders such as sarcopenia, osteoporosis and arthritis, with the aim to facilitate the treatment of musculoskeletal disorders.


Asunto(s)
Inflamasomas , Enfermedades Musculoesqueléticas , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamación , Proteínas Portadoras
10.
Int J Antimicrob Agents ; 64(4): 107285, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111708

RESUMEN

OBJECTIVES: Colistin (COL) was once considered to be the last line of defence against multidrug-resistant bacteria belonging to the family Enterobacteriaceae. Due to the misuse of COL, COL-resistant (COL-R) Enterobacteriaceae have emerged. To address this clinical issue and combat COL resistance, novel approaches are urgently needed. METHODS: In this study, the in vitro and in vivo antimicrobial and antibiofilm effects of the immunomodulator AS101 were investigated in combination with COL against COL-R Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae). RESULTS: Checkerboard assay, time-kill assay, and scanning electron microscopy confirmed the in vitro antimicrobial phenotype, whereas, crystal violet staining and multidimensional confocal laser scanning microscopy with live/dead staining confirmed the antibiofilm capability of the combination therapy. Moreover, the Galleria mellonella infection model and the mouse infection model indicated the high in vivo efficacy of the combination therapy. Additionally, cytotoxicity experiments performed using human kidney-derived HK-2 cells and haemolysis assays performed using human erythrocytes collectively demonstrated safety at effective combination concentrations. Furthermore, quantification of the expression of inflammatory cytokines via enzyme-linked immunosorbent assay confirmed the anti-inflammatory advantage of combination therapy. At the mechanistic level, changes in outer and inner membrane permeability and accumulation of ROS levels, which might be potential mechanisms for synergistic antimicrobial effects. CONCLUSIONS: This study found that AS101 can restore COL susceptibility in clinical COL-R E. coli and K. pneumoniae and also has synergistic antibiofilm and anti-inflammatory capabilities. This study provided a novel strategy to combat clinical infections caused by COL-R E. coli and K. pneumoniae.


Asunto(s)
Antibacterianos , Biopelículas , Colistina , Escherichia coli , Factores Inmunológicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Colistina/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Animales , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Humanos , Biopelículas/efectos de los fármacos , Ratones , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Factores Inmunológicos/farmacología , Infecciones por Escherichia coli/tratamiento farmacológico , Infecciones por Escherichia coli/microbiología , Modelos Animales de Enfermedad , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos , Farmacorresistencia Bacteriana , Sinergismo Farmacológico , Línea Celular
11.
Cell Stress Chaperones ; 29(1): 10-20, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219840

RESUMEN

Glutamate is a neurotransmitter that can cause excitatory neurotoxicity when its extracellular concentration is too high, leading to disrupted calcium balance and increased production of reactive oxygen species (ROS). Cordycepin, a nucleoside adenosine derivative, has been shown to protect against excitatory neurotoxicity induced by glutamate. To investigate its potential neuroprotective effects, the present study employed fluorescence detection and spectrophotometry techniques to analyze primary hippocampal-cultured neurons. The results showed that glutamate toxicity reduced hippocampal neuron viability, increased ROS production, and increased intracellular calcium levels. Additionally, glutamate-induced cytotoxicity activated acetylcholinesterase and decreased glutathione levels. However, cordycepin inhibited glutamate-induced cell death, improved cell viability, reduced ROS production, and lowered Ca2+ levels. It also inhibited acetylcholinesterase activation and increased glutathione levels. This study suggests that cordycepin can protect against glutamate-induced neuronal injury in cell models, and this effect was inhibited by adenosine A1 receptor blockers, indicating that its neuroprotective effect is achieved through activation of the adenosine A1 receptor.


Asunto(s)
Fármacos Neuroprotectores , Fármacos Neuroprotectores/farmacología , Ácido Glutámico/toxicidad , Ácido Glutámico/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/farmacología , Especies Reactivas de Oxígeno/metabolismo , Calcio/metabolismo , Apoptosis , Desoxiadenosinas/farmacología , Desoxiadenosinas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Glutatión/metabolismo
12.
Heliyon ; 10(9): e30276, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38711667

RESUMEN

Investigating oat tissue microflora during its different developmental stages is necessary for understanding its growth and anti-disease mechanism. In this study, 16S rDNA and ITS (Internally Transcribed Spacer) high-throughput sequencing technology were used to explore the microflora diversity of oat tissue. Twenty-seven samples of leaves, stems, and roots from three developmental stages, namely the seedling stage (SS), jointing stage (JS), and maturity stage (MS), underwent sequencing analysis. The analysis showed that 6480 operational taxonomic units (OTUs) were identified in the examined samples, of which 1698 were fungal and 4782 were bacterial. Furthermore, 126 OTUs were shared by fungi, mainly Ascomycota, Basidiomycota, and Mucoromycota at the phylum level, and 39 OTUs were shared by bacteria, mainly Actinobacteriota and Proteobacteria at the phylum level. The microbial diversity of oat tissue in the three developmental stages showed differences, and the α-diversity of the bacteria and ß-diversity of the bacteria and fungi in the roots were higher than those of the stems and leaves. Among the bacteria species, Thiiopseudomonas, Rikenellaceae RC9 gut group, and Brevibacterium were predominant in the leaves, MND1 was predominant in the roots, and Lactobacillus was predominant in the stems. Moreover, Brevibacterium maintained a stable state at all growth stages. In the fungal species, Phomatospora was dominant in the leaves, Kondoa was dominant in the roots, and Pyrenophora was dominant in the stems. All species with a high abundance were related to the growth process of oats and antagonistic bacteria. Furthermore, connection modules were denser in bacterial than in fungal populations. The samples were treated with superoxide dismutase and peroxidase. There were 42 strains associated with SOD (Superoxide dismutase), 60 strains associated with POD (Peroxidase), and 38 strains in total, which much higher than fungi. The network analysis showed that bacteria might have more dense connection modules than fungi, The number of bacterial connections to enzymes were much higher than that of fungi. Furthermore, these results provide a basis for further mechanistic research.

13.
J Physiol Biochem ; 80(2): 349-362, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38372933

RESUMEN

Palmitic acid (PA), a saturated fatty acid enriched in high-fat diet, has been implicated in the development of skeletal muscle regeneration dysfunction. This study aimed to examine the effects and mechanisms of lactate (Lac) treatment on PA-induced impairment of C2C12 cell differentiation capacity. Furthermore, the involvement of voltage-gated calcium channels in this context was examined. In this study, Lac could improve the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG. In addition, Lac increases the inward flow of Ca2+, and promotes the depolarization of the cell membrane potential, thereby activating voltage-gated calcium channels during C2C12 cell differentiation. The enchancement of Lac on myoblast differentiative capacity was abolished after the addition of efonidipine (voltage-gated calcium channel inhibitors). Therefore, voltage-gated calcium channels play an important role in improving PA-induced skeletal muscle regeneration disorders by exercising blood Lac. Our study showed that Lac could rescue the PA-induced impairment of differentiative capacity in C2C12 cells by affecting Myf5, MyoD and MyoG through the activation of voltage-gated calcium channels.


Asunto(s)
Canales de Calcio , Diferenciación Celular , Ácido Láctico , Animales , Ratones , Calcio/metabolismo , Canales de Calcio/efectos de los fármacos , Canales de Calcio/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular , Ácido Láctico/metabolismo , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Factor 5 Regulador Miogénico/metabolismo , Ácido Palmítico/farmacología
14.
Cell Signal ; 113: 110970, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967692

RESUMEN

Voltage-gated sodium channels (VGSC) are essential for triggering and relaying action potentials (AP), which perform critical functions in a variety of physiological processes, such as controlling muscle contractions and facilitating the release of neurotransmitters. In this study, we used a mouse C2C12 cell differentiation model to study the molecular expression and channel dynamics of VGSC and to investigate the exact role of VGSC in the development of muscle regeneration. Immunofluorescence, Real-time quantitative polymerase chain reaction, Western blot, and whole-cell patch clamp were employed for this purpose in mouse myoblasts. The findings revealed an increase in intracellular sodium concentration, NaV1.4 gene expression, and protein expression with the progress of differentiation (days 0, 1, 3, 5 and 7). Furthermore, VGSC dynamics exhibit the following characteristics: ① The increase of sodium current (INa); ② The decrease in the activation threshold and the voltage trigger maximum of INa; ③ A positive shift in the steady-state inactivation curve; ④ The recovery of INa during repolarization is delayed, the activity-dependent decay rate of INa was accelerated, and the proportionate amount of the fraction of activated channels was reduced. Based on these results, it is postulated that the activation threshold of AP could be decreased, and the refractory period could be extended with the extension of differentiation duration, which may contribute to muscle contraction. Taken together, VGSC provides a theoretical and empirical basis for exploring potential targets for neuromuscular diseases and other therapeutic muscle regeneration dysfunctions.


Asunto(s)
Canales de Sodio Activados por Voltaje , Animales , Ratones , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Diferenciación Celular , Sodio/metabolismo
15.
Tissue Cell ; 87: 102324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354685

RESUMEN

Lactate serves not merely as an energy substrate for skeletal muscle but also regulates myogenic differentiation, leading to an elevation of reactive oxygen species (ROS) levels. The present study was focused on exploring the effects of lactate and ROS/p38 MAPK in promoting C2C12 myoblasts differentiation. Our results demonstrated that lactate increased C2C12 myoblasts differentiation at a range of physiological concentrations, accompanied by enhanced ROS contents. We used n-acetylcysteine (NAC, a ROS scavenger) pretreatment and found that it delayed lactate-induced C2C12 myoblast differentiation by upregulating Myf5 expression on days 5 and 7 and lowering MyoD and MyoG expression. The finding implies that lactate accompanies ROS-dependent manner to promote C2C12 myoblast differentiation. Additionally, lactate significantly increased p38 MAPK phosphorylation to promote C2C12 cell differentiation, but pretreatment with SB203580 (p38 MAPK inhibitor) reduced lactate-induced C2C12 myoblasts differentiation. whereas lactate pretreatment with NAC inhibited p38 MAPK phosphorylation in C2C12 cells, demonstrating that lactate mediated ROS and regulated the p38 MAPK signalling pathway to promote C2C12 cell differentiation. In conclusion, our results suggest that the promotion of C2C12 myoblasts differentiation by lactate is dependent on ROS and the p38 MAPK signalling pathway. These observations reveal a beneficial role for lactate in increasing myogenesis through ROS-sensitive mechanisms as well as providing new ideas regarding the positive impact of ROS in improving the function of skeletal muscle.


Asunto(s)
Ácido Láctico , Proteínas Quinasas p38 Activadas por Mitógenos , Especies Reactivas de Oxígeno/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/farmacología , Diferenciación Celular , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Mioblastos/metabolismo
16.
Sci Rep ; 14(1): 12950, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839805

RESUMEN

Endophytes have been shown to promote plant growth and health. In the present study, a Bacillus velezensis CH1 (CH1) strain was isolated and identified from high-quality oats, which was capable of producing indole-3-acetic acid (IAA) and strong biofilms, and capabilities in the nitrogen-fixing and iron carriers. CH1 has a 3920 kb chromosome with 47.3% GC content and 3776 code genes. Compared genome analysis showed that the largest proportion of the COG database was metabolism-related (44.79%), and 1135 out of 1508 genes were associated with the function "biosynthesis, transport, and catabolism of secondary metabolites." Furthermore, thirteen gene clusters had been identified in CH1, which were responsible for the synthesis of fifteen secondary metabolites that exhibit antifungal and antibacterial properties. Additionally, the strain harbors genes involved in plant growth promotion, such as seven putative genes for IAA production, spermidine and polyamine synthase genes, along with multiple membrane-associated genes. The enrichment of these functions was strong evidence of the antimicrobial properties of strain CH1, which has the potential to be a biofertilizer for promoting oat growth and disease resistance.


Asunto(s)
Avena , Bacillus , Ácidos Indolacéticos , Bacillus/genética , Bacillus/metabolismo , Bacillus/aislamiento & purificación , Avena/microbiología , Avena/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Biopelículas/crecimiento & desarrollo , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Fijación del Nitrógeno , Filogenia , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Endófitos/genética , Genoma Bacteriano
17.
Immun Inflamm Dis ; 11(7): e943, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37506152

RESUMEN

OBJECTIVE: Pyogenic liver abscess (PLA) is a common surgical infectious disease caused by various pathogens. Klebsiella pneumoniae is a relatively recent cause, often affecting patients with low immunity. Endogenous endophthalmitis (EE), a rare and serious complication of PLA, may appear with eye symptoms before PLA. By reviewing a case of Klebsiella pneumoniae-induced PLA complicated with EE, we want to summarize the information about the characteristics, causes, and complications of PLA based on the literature review. METHODS: This case report describes a 37-year-old male who had fever high to 39°C for 10 days experienced blurred vision followed by nonlight perception vision. He reported a history of diabetes irregularly taking oral medications and insulin therapy. Imaging examination found a large low-density area in the right lobe of the liver with an unclear border and vague surrounding fat gap. The blood culture was not positive. The culture of the drainage fluid from the liver puncture showed Klebsiella pneumonia. Blood and liver puncture drainage fluid were sent for microbial high-throughput gene detection with next-generation sequencing technology (NGS), which confirmed the diagnosis of Klebsiella pneumoniae-induced PLA complicated with EE. RESULTS: The patient's surgical incision had healed well at discharge, and he could feel light at his left eye. But the patient was lost to follow-up since the third month after discharge. CONCLUSION: By reviewing this case and summarize the information about the characteristics, causes, and complications of PLA based on the literature review, we concluded that it is necessary to promptly perform liver puncture drainage and empirically use antibiotics for patients with PLA, especially those with poor glycemic control, to avoid serious complications such as EE.


Asunto(s)
Endoftalmitis , Infecciones por Klebsiella , Absceso Piógeno Hepático , Masculino , Humanos , Adulto , Absceso Piógeno Hepático/diagnóstico , Absceso Piógeno Hepático/terapia , Absceso Piógeno Hepático/complicaciones , Klebsiella pneumoniae/genética , Antibacterianos/uso terapéutico , Infecciones por Klebsiella/complicaciones , Infecciones por Klebsiella/diagnóstico , Infecciones por Klebsiella/tratamiento farmacológico , Endoftalmitis/diagnóstico , Endoftalmitis/etiología , Endoftalmitis/terapia
18.
Biomed Pharmacother ; 165: 115163, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37453196

RESUMEN

Cordycepin (with a molecular formula of C10H13N5O3), a natural adenosine isolated from Cordyceps militaris, has an important regulatory effect on skeletal muscle remodelling and quality maintenance. The aim of this study was to investigate the effect of cordycepin on myoblast differentiation and explore the underlying molecular mechanisms of this effect. Our results showed that cordycepin inhibited myogenesis by downregulating myogenic differentiation (MyoD) and myogenin (MyoG), preserved undifferentiated reserve cell pools by upregulating myogenic factor 5 (Myf5) and retinoblastoma-like protein p130 (p130), and enhanced energy reserves by decreasing intracellular reactive oxygen species (ROS) and enhancing mitochondrial membrane potential, mitochondrial mass, and ATP content. The effect of cordycepin on myogenesis was associated with increased phosphorylation of extracellular signal-regulated kinase 1/2 (p-ERK1/2). PD98059 (a specific inhibitor of p-ERK1/2) attenuated the inhibitory effect of cordycepin on C2C12 differentiation. The present study reveals that cordycepin inhibits myogenesis through ERK1/2 MAPK signalling activation accompanied by an increase in skeletal muscle energy reserves and improving skeletal muscle oxidative stress, which may have implications for its further application for the prevention and treatment of degenerative muscle diseases caused by the depletion of depleted muscle stem cells.


Asunto(s)
Desoxiadenosinas , Sistema de Señalización de MAP Quinasas , Diferenciación Celular , Desoxiadenosinas/farmacología , Desarrollo de Músculos
19.
Biomed Pharmacother ; 163: 114776, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37100012

RESUMEN

Type 2 diabetes mellitus (T2DM) is a common and multiple endocrine metabolic disease. When pancreatic ß cell in case of dysfunction, the synthesis and secretion of insulin are reduced. This study is to explore the effect of cordycepin (the molecular formula C10H13N5O3), a natural adenosine isolated from Cordyceps militaris, on high glucose/lipid-induced glucotoxicity and lipotoxicity in INS-1 cells. Our results showed that cordycepin improved cell viability, improved cell energy metabolism and promoted insulin synthesis and secretion. The mechanism may be related to that cordycepin reduces intracellular reactive oxygen species (ROS), increases ATP content in cells, causes membrane depolarization and balances the steady state of Ca2+ concentration, cordycepin inhibits cell apoptosis, which may be related to the downregulation of proteins level of c-Jun N-terminal kinases (JNK) phosphorylation, cytochrome c (Cyt-c), Cleaved Capase-3, the mRNA level of JNK, Cyt-c, Capase-3 and upregulation of proteins/mRNA level of pancreatic and duodenal homeobox factor-1 (PDX-1). These results suggest that cordycepin can inhibit cell apoptosis and protect cell number by downregulating ROS/JNK mitochondrial apoptosis pathway under high glucose/lipid environment, thereby improving the function of pancreatic islet cells, providing a theoretical basis for the related research on the prevention and control of cordycepin on T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Apoptosis , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Lípidos/farmacología , Sistema de Señalización de MAP Quinasas , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero/metabolismo , Animales , Ratas
20.
Eur J Pharmacol ; 920: 174843, 2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35196519

RESUMEN

Diabetes mellitus (DM) has recently become one of the major diseases that have received attention. Cordycepin (molecular formula: C10H13N5O3), is one of the major bioactive components of Cordyceps militaris, decreases blood glucose levels. In this study, the effect and mechanism of cordycepin in normal and oxidative-damaged INS-1 cells were explored by using cell and molecular biology methods. Results showed that cordycepin could enhance insulin synthesis and secretion. The mechanism is possibly related to the elevated ATP content induced membrane depolarisation and increased Ca2+ concentration. At the genetic level, cordycepin upregulated the mRNA level of insulin, pancreatic duodenal homeobox factor-1 (PDX-1) and glucose transporter 1 (GLUT1). At the protein level, cordycepin promoted the expression of PDX-1, GLUT1, serine threonine kinase (Akt) and phosphorylated Akt (P-Akt). These effects may also contribute to the enhancement of insulin synthesis and secretion. Further analysis revealed that cordycepin protected against H2O2-induced damage on INS-1 cells and improved their viability and insulin synthesis/secretion. This effect should be attributed to the reduced intracellular reactive oxygen species (ROS), enhanced mitochondrial membrane potential (MMP), increased activity of superoxide dismutase (SOD) and upregulated genetic and protein expression of catalase (CAT), PDX-1, GLUT1 and P-Akt. In conclusion, cordycepin promotes insulin synthesis and secretion in normal islet ß cells and improves this function in oxidative-damaged islet ß cells. Given that islet ß cells are vulnerable to oxidative stress, the improving effect of cordycepin on the antioxidant capacity and insulin synthesis/secretion of INS-1 cells may be an important mechanism for its hypoglycaemic effect.


Asunto(s)
Células Secretoras de Insulina , Insulina , Desoxiadenosinas , Glucosa/metabolismo , Peróxido de Hidrógeno/farmacología , Insulina/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda