Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Res ; 238(Pt 2): 117180, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739154

RESUMEN

The conversion of biomass waste into high-value nanomaterials such as carbon dots might represent a great advancement towards a circular economy system. Biomass wastes are an excellent choice as carbon precursors because of their wide availability, abundance, chemical composition, and eco-friendly nature. Moreover, their use as a raw material might decrease the total cost of the synthesis processes and reduce the environmental impacts. In addition, the complex composition of biomass leads to carbon dots with abundant functional groups, which in turn enhances water dispersibility and photoluminescence properties. In this manner, the effective transformation of biomass wastes into carbon dots reduces environmental pollution through the inadequate management of waste while producing carbon dots with enhanced performances. Therefore, this review describes biomass wastes as potential candidates for the synthesis of carbon dots through different synthesis methods. In addition, we have analyzed the great potential of biomass-derived carbon dots (CDs) for the degradation and detection of emerging pharmaceutical pollutants by promoting a circular economy approach. Finally, we identified current challenges to propose possible research directions for the large-scale and sustainable synthesis of high-quality biomass-derived CDs.


Asunto(s)
Carbono , Nanoestructuras , Carbono/química , Contaminación Ambiental , Biomasa , Preparaciones Farmacéuticas
2.
Environ Res ; 229: 115892, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37084948

RESUMEN

The COVID-19 pandemic has brought increments in market sales and prescription of medicines commonly used to treat mental health disorders, such as depression, anxiety, stress, and related problems. The increasing use of these drugs, named psychiatric drugs, has led to their persistence in aquatic systems (bioaccumulation), since they are recalcitrant to conventional physical and chemical treatments typically used in wastewater treatment plants. An emerging environmental concern caused by the bioaccumulation of psychiatric drugs has been attributed to the potential ecological and toxicological risk that these medicines might have over human health, animals, and plants. Thus, by the application of biocatalysis-assisted techniques, it is possible to efficiently remove psychiatric drugs from water. Biocatalysis, is a widely employed and highly efficient process implemented in the biotransformation of a wide range of contaminants, since it has important differences in terms of catalytic behavior, compared to common treatment techniques, including photodegradation, Fenton, and thermal treatments, among others. Moreover, it is noticed the importance to monitor transformation products of degradation and biodegradation, since according to the applied removal technique, different toxic transformation products have been reported to appear after the application of physical and chemical procedures. In addition, this work deals with the discussion of differences existing between high- and low-income countries, according to their environmental regulations regarding waste management policies, especially waste of the drug industry.


Asunto(s)
COVID-19 , Contaminantes Químicos del Agua , Animales , Humanos , Biocatálisis , Bioacumulación , Pandemias , Agua , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental
3.
Mar Drugs ; 21(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37623731

RESUMEN

The production of biomolecules by microalgae has a wide range of applications in the development of various materials and products, such as biodiesel, food supplements, and cosmetics. Microalgae biomass can be produced using waste and in a smaller space than other types of crops (e.g., soja, corn), which shows microalgae's great potential as a source of biomass. Among the produced biomolecules of greatest interest are carbohydrates, proteins, lipids, and fatty acids. In this study, the production of these biomolecules was determined in two strains of microalgae (Chlamydomonas reinhardtii and Chlorella vulgaris) when exposed to different concentrations of nitrogen, phosphorus, and sulfur. Results show a significant microalgal growth (3.69 g L-1) and carbohydrates (163 mg g-1) increase in C. reinhardtii under low nitrogen concentration. Also, higher lipids content was produced under low sulfur concentration (246 mg g-1). It was observed that sulfur variation could affect in a negative way proteins production in C. reinhardtii culture. In the case of C. vulgaris, a higher biomass production was obtained in the standard culture medium (1.37 g L-1), and under a low-phosphorus condition, C. vulgaris produced a higher lipids concentration (248 mg g-1). It was observed that a low concentration of nitrogen had a better effect on the accumulation of fatty acid methyl esters (FAMEs) (C16-C18) in both microalgae. These results lead us to visualize the effects that the variation in macronutrients can have on the growth of microalgae and their possible utility for the production of microalgae-based subproducts.


Asunto(s)
Chlamydomonas reinhardtii , Chlorella vulgaris , Microalgas , Biomasa , Ácidos Grasos , Nitrógeno , Fósforo , Ésteres
4.
Environ Res ; 204(Pt D): 112407, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34801543

RESUMEN

The current nanotechnological advancements provide an astonishing insight to fabricate nanomaterials for nano-bioremediation purposes. Exciting characteristics possessed by hybrid matrices at the nanoscale knock endless opportunities to nano-remediate environmentally-related pollunanomaterials tants of emerging concern. Nanometals are considered among the oldest generation of the world has ever noticed. These tiny nanometals and nanometal oxides showed enormous potential in almost every extent of industrial and biotechnological domains, including their potential multipurpose approach to deal with water impurities. In this manuscript, we discussed their role in the diversity of water treatment technologies used to remove bacteria, viruses, heavy metals, pesticides, and organic impurities, providing an ample perspective on their recent advances in terms of their characteristics, attachment strategies, performance, and their scale-up challenges. Finally, we tried to explore their futuristic contribution to nano-remediate environmentally-related pollutants of emerging concern aiming to collect treated yet safe water that can be reused for multipurpose.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Purificación del Agua , Biodegradación Ambiental , Descontaminación
5.
Environ Res ; 214(Pt 2): 113936, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932833

RESUMEN

This review highlights the relevance of bioremediation techniques for the removal of emerging pollutants (EPs). The EPs are chemical or biological pollutants that are not currently monitored or regulated by environmental authorities, but which can enter the environment and cause harmful effects to the environment and human health. In recent times, an ample range of EPs have been found in water bodies, where they can unbalance ecosystems and cause negative effects on non-target species. In addition, some EPs have shown high rates of bioaccumulation in aquatic species, thus affecting the safety and quality of seafood. The negative impacts of emerging pollutants, their wide distribution in the environment, their bioaccumulation rates, and their resistance to wastewater treatment plants processes have led to research on sustainable remediation. Remediation techniques have been recently directed to advanced biological remediation technologies. Such technologies have exhibited numerous advantages like in-situ remediation, low costs, eco-friendliness, high public acceptance, and so on. Thus, the present review has compiled the most recent studies on bioremediation techniques for water decontamination from emerging pollutants to extend the current knowledge on sustainable remediation technologies. Biological emerging contaminants, agrochemicals, endocrine-disrupting chemicals, and pharmaceutical and personal care products were considered for this review study, and their removal by bioremediation techniques involving plants, bacteria, microalgae, and fungi. Finally, further research opportunities are presented based on current challenges from an economic, biological, and operation perspective.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Biodegradación Ambiental , Ecosistema , Humanos , Agua , Contaminantes Químicos del Agua/análisis
6.
Environ Res ; 214(Pt 2): 113955, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35932836

RESUMEN

Water supplies have been seriously challenged by new emerging pollutants, which are difficult to remove by traditional wastewater treatment. Thus, new technologies such as catalytic advanced oxidation processes have merged as suitable solutions; however, the drawbacks of typical catalysts limit their application. To overcome this issue, new materials with enhanced textural properties have been developed, showing that their porosity and chemical nature influence their potential as a catalyst. Herein, the recent progress in highly porous catalysts and their suitable deployment to effectively nano-remediate the polluted environmental matrices are reviewed in detail. First, following a brief introduction, several environmental pollutants of emerging concerns from different sectors, including pharmaceutical residues, endocrine-disrupting chemicals (EDCs), pesticides, and hazardous dyes are also introduced with relevant examples. To effectively tackle the sustainable remediation of emerging pollutants, this work also focuses on the multifunctional features of nanohybrid porous materials that act as catalysts constructs to degrade emerging pollutants. The influence of surface reactive centers, stability, bandgap energies, light absorption capacities, and pollutants adsorption capacities are also discussed. Successful examples of the employment of nanohybrid porous catalysts for the degradation of pharmaceutical pollutants, EDCs, pesticides, and hazardous dyes are summarized. Finally, some challenges faced by nanohybrid porous materials to achieve their potential application as advanced catalysts for environmental remediation have been identified and presented herein.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Restauración y Remediación Ambiental , Plaguicidas , Contaminantes Químicos del Agua , Catálisis , Colorantes , Contaminantes Ambientales/química , Preparaciones Farmacéuticas , Porosidad , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis
7.
Mar Drugs ; 20(12)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36547929

RESUMEN

Carbon dots (CDs) have attracted significant research attention worldwide due to their unique properties and advantageous attributes, such as superior optical properties, biocompatibility, easy surface functionalization, and more. Moreover, biomass-derived CDs have attracted much attention because of their additional advantages related to more environmentally friendly and lower-cost synthesis. In this respect, chitosan has been recently explored for the preparation of CDs, which in comparison to other natural precursors exhibited additional advantages. Beyond the benefits related to the eco-friendly and abundant nature of chitosan, using it as a nanomaterial precursor offers additional benefits in terms of structure, morphology, and dopant elements. Furthermore, the high content of nitrogen in chitosan allows it to be used as a single carbon and nitrogen precursor for the preparation of N-doped CDs, significantly improving their fluorescent properties and, therefore, their performances. This review addresses the most recent advances in chitosan-based CDs with a special focus on synthesis methods, enhanced properties, and their applications in different fields, including biomedicine, the environment, and food packaging. Finally, this work also addresses the key challenges to be overcome to propose future perspectives and research to unlock their great potential for practical applications.


Asunto(s)
Quitosano , Nanoestructuras , Puntos Cuánticos , Puntos Cuánticos/química , Carbono/química , Nitrógeno/química
8.
Biotechnol Biofuels Bioprod ; 17(1): 77, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835059

RESUMEN

Plastic consumption has increased globally, and environmental issues associated with it have only gotten more severe; as a result, the search for environmentally friendly alternatives has intensified. Polyhydroxyalkanoates (PHA), as biopolymers produced by microalgae, might be an excellent option; however, large-scale production is a relevant barrier that hinders their application. Recently, innovative materials such as carbon dots (CDs) have been explored to enhance PHA production sustainably. This study added green synthesized multi-doped CDs to Scenedesmus sp. microalgae cultures to improve PHA production. Prickly pear was selected as the carbon precursor for the hydrothermally synthesized CDs doped with nitrogen, phosphorous, and nitrogen-phosphorous elements. CDs were characterized by different techniques, such as FTIR, SEM, ζ potential, UV-Vis, and XRD. They exhibited a semi-crystalline structure with high concentrations of carboxylic groups on their surface and other elements, such as copper and phosphorus. A medium without nitrogen and phosphorous was used as a control to compare CDs-enriched mediums. Cultures regarding biomass growth, carbohydrates, lipids, proteins, and PHA content were analyzed. The obtained results demonstrated that CDs-enriched cultures produced higher content of biomass and PHA; CDs-enriched cultures presented an increase of 26.9% in PHA concentration and an increase of 32% in terms of cell growth compared to the standard cultures.

9.
Top Catal ; 66(9-12): 707-722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36597435

RESUMEN

Nanomaterials possess superior advantages due to their special geometries, higher surface area, and unique mechanical, optical, and physicochemical properties. Their characteristics make them great contributors to the development of many technological and industrial sectors. Therefore, novel nanomaterials have an increasing interest in many research areas including biomedicine such as chronic inflammations, disease detection, drug delivery, and infections treatment. Their relevant role is, in many cases, associated with an effective catalytic application, either as a pure catalyst (acting as a nanozyme) or as a support for catalytically active materials (forming nanobiocatalysts). In this review, we analyze the construction of nanozymes and nanobiocatalyst by different existing forms of nanomaterials including carbon-based nanomaterials, metal-based nanomaterials, and polymer-based nanocomposites. Then, we examine successful examples of such nanomaterials employed in biomedical research. The role played by nanomaterials in catalytic applications is analyzed to identify possible research directions toward the development of the field and the achievement of real practicability.

10.
Chemosphere ; 312(Pt 1): 137190, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36368530

RESUMEN

The contamination of the environment by domestic and industrial discharges is a relevant and persistent problem that needs novel solutions. Innovations in the detection, adsorption, and removal or in-situ degradation of toxic components are urgently required. Various effective techniques and materials have been proposed to address this problem, in which carbon dots (CDs) stand out because of their unique properties and low-cost and abundant nature. Their combination with different metals results in the enhancement of their innate properties. Metal-doped CDs have shown excellent results and competitive advantages in recent times. Considering the above useful critiques and CDs notable potentialities, this review discusses different approaches in detail to sense, adsorb, and photodegrade different pollutants in water samples. It was found that altering the electronic structure of CDs via metal doping has a great potential to enhance the optical, electrical, chemical, and magnetic capabilities of CDs, which in turn is beneficial for wastewater treatment.


Asunto(s)
Nanoestructuras , Puntos Cuánticos , Contaminantes del Agua , Purificación del Agua , Carbono/química , Purificación del Agua/métodos , Metales , Puntos Cuánticos/química
11.
MethodsX ; 10: 102161, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077891

RESUMEN

Magnetic nanoparticles are of great interest for research as they have a wide range of applications in biotechnology, environmental science, and biomedicine. Magnetic nanoparticles are ideal for magnetic separation, improving catalysis's speed and reusability by immobilizing enzymes. Nanobiocatalysis allows the removal of persistent pollutants in a viable, cost-effective and eco-friendly manner, transforming several hazardous compounds in water into less toxic derivatives. Iron oxide and graphene oxide are the preferred materials used to confer nanomaterials their magnetic properties for this purpose as they pair well with enzymes due to their biocompatibility and functional properties. This review describes the most common synthesis methods for magnetic nanoparticles and their performance of nanobiocatalysis for the degradation of pollutants in water.•Magnetic nanomaterials have been synthesized for their application in nanobiocatalysis and treating groundwater.•The most used method for magnetic nanoparticle preparation is the co-precipitation technique.•Peroxidase and oxidase enzymes have great potential in the remotion of multiple contaminants from groundwater.

12.
Foods ; 12(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685092

RESUMEN

Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.

13.
Vet Sci ; 10(10)2023 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-37888561

RESUMEN

Molecular diagnostic tests have evolved very rapidly in the field of human health, especially with the arrival of the recent pandemic caused by the SARS-CoV-2 virus. However, the animal sector is constantly neglected, even though accurate detection by molecular tools could represent economic advantages by preventing the spread of viruses. In this regard, the swine industry is of great interest. The main viruses that affect the swine industry are described in this review, including African swine fever virus (ASFV), porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and porcine circovirus (PCV), which have been effectively detected by different molecular tools in recent times. Here, we describe the rationale of molecular techniques such as multiplex PCR, isothermal methods (LAMP, NASBA, RPA, and PSR) and novel methods such as CRISPR-Cas and microfluidics platforms. Successful molecular diagnostic developments are presented by highlighting their most important findings. Finally, we describe the barriers that hinder the large-scale development of affordable, accessible, rapid, and easy-to-use molecular diagnostic tests. The evolution of diagnostic techniques is critical to prevent the spread of viruses and the development of viral reservoirs in the swine industry that impact the possible development of future pandemics and the world economy.

14.
Chemosphere ; 303(Pt 1): 135054, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35613636

RESUMEN

Carbon-based materials are among the most biosynthesized nanocomposites with excellent tunability and multifunctionality features, that other materials fail to demonstrate. Naturally occurring materials, such as alginate (Alg), can be combined and modified by linking the active moieties of various carbon-based materials of interest, such as graphene oxide (GO), carbon nanotubes (CNTs), and mesoporous silica nanocomposite (MSN), among others. Thus, several types of robust nanocomposites have been fabricated and deployed for environmental remediation of emerging pollutants, such as pharmaceutical compounds, toxic dyes, and other environmentally hazardous contaminants of emerging concern. Considering the above critiques and added features of carbon-based nanocomposites, herein, an effort has been made to spotlight the synergies of GO, CNTs, and MSN with Alg and their role in mitigating emerging pollutants. From the information presented in this work, it can be concluded that Alg is a material that has excellent potential. However, its use still requires further tests in different areas and other materials to carry out a holistic investigation that exploits its versatility for environmental remediation purposes.


Asunto(s)
Contaminantes Ambientales , Restauración y Remediación Ambiental , Nanocompuestos , Nanotubos de Carbono , Contaminantes Químicos del Agua , Adsorción , Alginatos , Nanocompuestos/toxicidad , Nanotubos de Carbono/toxicidad , Dióxido de Silicio , Contaminantes Químicos del Agua/análisis
15.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-35159643

RESUMEN

In this work, carbon dots were created from activated and non-activated pyrolytic carbon black obtained from waste tires, which were then chemically oxidized with HNO3. The effects caused to the carbon dot properties were analyzed in detail through characterization techniques such as ion chromatography; UV-visible, Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy; ζ potential; transmission electron microscopy (TEM); and spectrofluorometry. The presence of functional groups on the surface of all carbon dots was revealed by UV-visible, FTIR, XPS, and Raman spectra. The higher oxidation degrees of carbon dots from activated precursors compared to those from nonactivated precursors resulted in differences in photoluminescence (PL) properties such as bathochromic shift, lower intensity, and excitation-dependent behavior. The results demonstrate that the use of an activating agent in the recovery of pyrolytic carbon black resulted in carbon dots with different PL properties. In addition, a dialysis methodology is proposed to overcome purification obstacles, finding that 360 h were required to obtain pure carbon dots synthesized by a chemical oxidation method.

16.
J Hazard Mater ; 423(Pt B): 127145, 2022 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-34547693

RESUMEN

Environmental pollution is a critical issue that requires proper measures to maintain environmental health in a sustainable and effective manner. The growing persistence of several active pharmaceutical residues, such as antibiotics like tetracycline, and anti-inflammatory drugs like diclofenac in water matrices is considered an issue of global concern. Numerous sewage/drain waste lines from the domestic and pharmaceutical sector contain an array of toxic compounds, so-called "emerging pollutants" and possess adverse effects on entire living ecosystem and damage its biodiversity. Therefore, effective solution and preventive measures are urgently required to sustainably mitigate and/or remediate pharmaceutically active emerging pollutants from environmental matrices. In this context, herein, the entry pathways of the pharmaceutical waste into the environment are presented, through the entire lifecycle of a pharmaceutical product. There is no detailed review available on carbon-dots (CDs) as robust materials with multifunctional features that support sustainable mitigation of emerging pollutants from water matrices. Thus, CDs-based photocatalysts are emerging as an efficient alternative for decontamination by pharmaceutical pollutants. The addition of CDs on photocatalytic systems has an important role in their performance, mainly because of their up-conversion property, transfer photoinduced electron capacities, and efficient separation of electrons and holes. In this review, we analyze the strategies followed by different researchers to optimize the photodegradation of various pharmaceutical pollutants. In this manner, the effect of different parameters such as pH, the dosage of photocatalyst, amount of carbon dots, and initial pollutant concentration, among others are discussed. Finally, current challenges are presented from a pollution prevention perspective and from CDs-based photocatalytic remediation perspective, with the aim to suggest possible research directions.


Asunto(s)
Contaminantes Ambientales , Preparaciones Farmacéuticas , Carbono , Descontaminación , Ecosistema
17.
Sci Total Environ ; 821: 153329, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35093347

RESUMEN

Pharmaceutical compounds are designed to elicit a biological reaction in specific organisms. However, they may also elicit a biological response in non-specific organisms when exposed to ambient quantities. Therefore, the potential human health hazards and environmental effects associated with pharmaceutically active compounds presented in aquatic environments are being studied by researchers all over the world. Owing to their broad-spectrum occurrence in various environmental matrices, direct or indirect environmental hazardous impacts, and human-health related consequences, several pharmaceutically active compounds have been categorized as emerging contaminants (ECs) of top concern. ECs are often recalcitrant and resistant to abate from water matrices. In this review, we have examined the classification, occurrence, and environmental hazards of pharmaceutically active compounds. Moreover, because of their toxicity and the inefficiency of wastewater treatment plants to remove pharmaceutical pollutants, novel wastewater remediation technologies are urgently required. Thus, we have also analyzed the recent advances in microbes-assisted bioremediation as a suitable, cost-effective, and eco-friendly alternative for the decontamination of pharmaceutical pollutants. Finally, the most important factors to reach optimal bioremediation are discussed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Biodegradación Ambiental , Humanos , Aguas Residuales , Agua , Contaminantes Químicos del Agua/análisis
18.
Biosensors (Basel) ; 12(12)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36551045

RESUMEN

The synergistic potentialities of innovative materials that include aptamers have opened new paradigms in biosensing platforms for high-throughput monitoring systems. The available nucleobase functional moieties in aptamers offer exclusive features for bioanalytical sensing applications. In this context, compared to various in-practice biological recognition elements, the utilization of aptamers in detection platforms results in an extensive range of advantages in terms of design flexibility, stability, and sensitivity, among other attributes. Thus, the utilization of aptamers-based biosensing platforms is extensively anticipated to meet unaddressed challenges of various in-practice and standard analytical and sensing techniques. Furthermore, the superior characteristics of aptasensors have led to their applicability in the detection of harmful pollutants present in ever-increasing concentrations in different environmental matrices and water bodies, seeking to achieve simple and real-time monitoring. Considering the above-mentioned critiques and notable functional attributes of aptamers, herein, we reviewed aptamers as a fascinating interface to design, develop, and deploy a new generation of monitoring systems to aid modern bioanalytical sensing applications. Moreover, this review aims to summarize the most recent advances in the development and application of aptasensors for the detection of various emerging pollutants (EPs), e.g., pharmaceutical, and personal care products (PPCPs), endocrine-disrupting chemicals (EDCs), pesticides and other agricultural-related compounds, and toxic heavy elements. In addition, the limitations and current challenges are also reviewed, considering the technical constraints and complexity of the environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Contaminantes Ambientales , Plaguicidas , Aptámeros de Nucleótidos/química , Contaminantes Ambientales/análisis , Técnicas Biosensibles/métodos
19.
Chemosphere ; 297: 134172, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35248594

RESUMEN

The presence of endocrine-disrupting chemicals (EDCs) in water resources has significant negative implications for the environment. Traditional technologies implemented for water treatment are not completely efficient for removing EDCs from water. Therefore, research on sustainable remediation has been mainly directed to novel decontamination approaches including nano-remediation. This emerging technology employs engineered nanomaterials to clean up the environment quickly, efficiently, and sustainably. Thus, nanomaterials have contributed to a wide variety of remediation techniques like adsorption, filtration, coagulation/flocculation, and so on. Among the vast diversity of decontamination technologies catalytic advanced oxidation processes (AOPs) outstand as simple, clean, and efficient alternatives. A vast diversity of catalysts has been developed demonstrating high efficiencies; however, the search for novel catalysts with enhanced performances continues. In this regard, nanomaterials used as nanocatalysts are exhibiting enhanced performances on AOPs due to their special nanostructures and larger specific surface areas. Therefore, in this review we summarize, compare, and discuss the recent advances on nanocatalysts, catalysts doped with metal-based nanomaterials, and catalysts doped with carbon-based nanomaterials on the degradation of EDCs. Finally, further research opportunities are identified and discussed to achieve the real application of nanomaterials to efficiently degrade EDCs from water resources.


Asunto(s)
Disruptores Endocrinos , Contaminantes Ambientales , Nanoestructuras , Contaminantes Químicos del Agua , Purificación del Agua , Carbono , Disruptores Endocrinos/análisis , Contaminantes Químicos del Agua/análisis
20.
Chemosphere ; 300: 134515, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35398070

RESUMEN

Rapid industrialization and manufacturing expansion have caused heavy metal pollution, which is a critical environmental issue faced by global population. In addition, the disadvantages presented by conventional detection methods such as the requirement of sophisticated instruments and qualified personnel have led to the development of novel nanosensors. Recently, carbon dots (CDs) have been presented as a multifunctional nanomaterial alternative for the accurate detection of heavy metal ions in water systems. The capacity of CDs to detect contaminants in wastewater -including heavy metals- can be found in the literature; however, to the best of our knowledge, none of them discusses the most recent strategies to enhance their performance. Therefore, in this review, beyond presenting successful examples of the use of CDs for the detection of metal ions, we further discuss the strategies to enhance their photoluminescence properties and their performance for environmental monitoring. In this manner, strategies such as heteroatom-doping and surface passivation are reviewed in detail, as well as describing the mechanisms and the effect of precursors and synthesis methods. Finally, the current challenges are described in detail to propose some recommendations for further research.


Asunto(s)
Metales Pesados , Nanoestructuras , Carbono , Colorantes , Contaminación Ambiental , Iones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda