Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Phys Chem B ; 128(33): 7966-7977, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39133203

RESUMEN

The application of light in studying and influencing cellular behavior with improved temporal and spatial resolution remains a key objective in fields such as chemistry, physics, medicine, and engineering. In the brain, nonexcitable cells called astrocytes play essential roles in regulating homeostasis and cognitive function through complex calcium signaling pathways. Understanding these pathways is vital for deciphering brain physiology and neurological disorders like Parkinson's and Alzheimer's. Despite challenges in selectively targeting astrocyte signaling pathways due to shared molecular equipment with neurons, recent advancements in laser technology offer promising avenues. However, the effort to use laser light properties to study astroglial cell function is still limited. This work aims to exploit an in-depth pharmacological analysis of astrocyte calcium channels to determine the physiological mechanism induced by exposure to classical nanosecond-pulsed light. We herein report molecular clues supporting the use of visible-nanosecond laser pulses as a promising approach to excite primary rat neocortical astrocytes and unprecedentedly report on the implementation of entangled two-photon microscopy to image them.


Asunto(s)
Astrocitos , Señalización del Calcio , Astrocitos/metabolismo , Animales , Ratas , Luz , Calcio/metabolismo , Rayos Láser , Células Cultivadas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda