Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 23(12): 1408-22, 2009 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-19528319

RESUMEN

Cell growth is an essential requirement for cell cycle progression. While it is often held that growth is independent of cell cycle position, this relationship has not been closely scrutinized. Here we show that in budding yeast, the ability of cells to grow changes during the cell cycle. We find that cell growth is faster in cells arrested in anaphase and G1 than in other cell cycle stages. We demonstrate that the establishment of a polarized actin cytoskeleton-either as a consequence of normal cell division or through activation of the mating pheromone response-potently attenuates protein synthesis and growth. We furthermore show by population and single-cell analysis that growth varies during an unperturbed cell cycle, slowing at the time of polarized growth. Our study uncovers a fundamental relationship whereby cell cycle position regulates growth.


Asunto(s)
Ciclo Celular/fisiología , Saccharomyces cerevisiae/citología , Actinas/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Aumento de la Célula/efectos de los fármacos , Tamaño de la Célula , Regulación hacia Abajo/efectos de los fármacos , Mutación/genética , Feromonas/farmacología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
2.
Mol Microbiol ; 75(2): 452-61, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19968790

RESUMEN

The essential proteins DnaB, DnaD and DnaI of Bacillus subtilis are required for initiation, but not elongation, of DNA replication, and for replication restart at stalled forks. The interactions and functions of these proteins have largely been determined in vitro based on their roles in replication restart. During replication initiation in vivo, it is not known if these proteins, and the replication initiator DnaA, associate with oriC independently of each other by virtue of their DNA binding activities, as a (sub)complex like other loader proteins, or in a particular dependent order. We used temperature-sensitive mutants or a conditional degradation system to inactivate each protein and test for association of the other proteins with oriC in vivo. We found that there was a clear order of stable association with oriC; DnaA, DnaD, DnaB, and finally DnaI-mediated loading of helicase. The loading of helicase via stable intermediates resembles that of eukaryotes and the established hierarchy provides several potential regulatory points. The general approach described here can be used to analyse assembly of other complexes.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , ADN Helicasas/genética , Replicación del ADN , Origen de Réplica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cinética , Modelos Genéticos , Mutagénesis , Mutagénesis Insercional , Complejo de Reconocimiento del Origen/genética , Termodinámica
3.
Mol Microbiol ; 74(2): 454-66, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19737352

RESUMEN

yabA encodes a negative regulator of replication initiation in Bacillus subtilis and homologues are found in many other gram-positive species. YabA interacts with the beta-processivity clamp (DnaN) of DNA polymerase and with the replication initiator and transcription factor DnaA. Because of these interactions, YabA has been proposed to modulate the activity of DnaA. We investigated the role of YabA in regulating replication initiation and the activity of DnaA as a transcription factor. We found that YabA function is mainly limited to replication initiation at oriC. Loss of YabA did not significantly alter expression of genes controlled by DnaA during exponential growth or after replication stress, indicating that YabA is not required for modulating DnaA transcriptional activity. We also found that DnaN activates replication initiation apparently through effects on YabA. Furthermore, association of GFP-YabA with the replisome correlated with the presence of DnaN at replication forks, but was independent of DnaA. Our results are consistent with models in which YabA inhibits replication initiation at oriC, and perhaps DnaA function at oriC, but not with models in which YabA generally modulates the activity of DnaA in response to replication stress.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/biosíntesis , ADN Polimerasa Dirigida por ADN/genética , Regulación Bacteriana de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo de Reconocimiento del Origen , ARN Mensajero/metabolismo , Transcripción Genética
4.
J Bacteriol ; 191(4): 1152-61, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19060143

RESUMEN

DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.


Asunto(s)
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Roturas del ADN de Doble Cadena , Escherichia coli/genética , Escherichia coli/metabolismo , Respuesta SOS en Genética/fisiología , Bacillus subtilis/efectos de la radiación , Desoxirribonucleasas de Localización Especificada Tipo II , Escherichia coli/efectos de la radiación , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/fisiología
5.
Cell Host Microbe ; 19(6): 849-64, 2016 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-27212659

RESUMEN

Quorum sensing (QS) is a bacterial communication mechanism in which secreted signaling molecules impact population function and gene expression. QS-like phenomena have been reported in eukaryotes with largely unknown contributing molecules, functions, and mechanisms. We identify Qsp1, a secreted peptide, as a central signaling molecule that regulates virulence in the fungal pathogen Cryptococcus neoformans. QSP1 is a direct target of three transcription factors required for virulence, and qsp1Δ mutants exhibit attenuated infection, slowed tissue accumulation, and greater control by primary macrophages. Qsp1 mediates autoregulatory signaling that modulates secreted protease activity and promotes cell wall function at high cell densities. Peptide production requires release from a secreted precursor, proQsp1, by a cell-associated protease, Pqp1. Qsp1 sensing requires an oligopeptide transporter, Opt1, and remarkably, cytoplasmic expression of mature Qsp1 complements multiple phenotypes of qsp1Δ. Thus, C. neoformans produces an autoregulatory peptide that matures extracellularly but functions intracellularly to regulate virulence.


Asunto(s)
Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Factores de Virulencia/metabolismo , Animales , Pared Celular/fisiología , Criptococosis/metabolismo , Cryptococcus neoformans/genética , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Macrófagos/metabolismo , Melaninas/metabolismo , Proteínas de Transporte de Membrana/genética , Meningitis/microbiología , Ratones , Ratones Endogámicos C57BL , Mutación , Péptido Hidrolasas/metabolismo , Percepción de Quorum , Conejos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Virulencia/genética
6.
Cold Spring Harb Perspect Med ; 5(3): a019596, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25377143

RESUMEN

Fungal infections are challenging to diagnose and often difficult to treat, with only a handful of drug classes existing. Understanding the molecular mechanisms by which pathogenic fungi cause human disease is imperative. Here, we discuss how the development and use of genome-scale genetic resources, such as whole-genome knockout collections, can address this unmet need. Using work in Saccharomcyes cerevisiae as a guide, studies of Cryptococcus neoformans and Candida albicans have shown how the challenges of large-scale gene deletion can be overcome, and how such collections can be effectively used to obtain insights into mechanisms of pathogenesis. We conclude that, with concerted efforts, full genome-wide functional analysis of human fungal pathogen genomes is within reach.


Asunto(s)
Candida albicans/genética , Cryptococcus neoformans/genética , Genoma Fúngico , Saccharomyces cerevisiae/genética , Candida albicans/patogenicidad , Cryptococcus neoformans/patogenicidad , Eliminación de Gen , Humanos
7.
Curr Biol ; 23(14): 1269-79, 2013 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-23810534

RESUMEN

BACKGROUND: Growth rate is determined not only by extracellular cues such as nutrient availability but also by intracellular processes. Changes in cell morphology in budding yeast, mediated by polarization of the actin cytoskeleton, have been shown to reduce cell growth. RESULTS: Here we demonstrate that polarization of the actin cytoskeleton inhibits the highly conserved Target of Rapamycin Complex 1 (TORC1) pathway. This downregulation is suppressed by inactivation of the TORC1 pathway regulatory Iml1 complex, which also regulates TORC1 during nitrogen starvation. We further demonstrate that attenuation of growth is important for cell recovery after conditions of prolonged polarized growth. CONCLUSIONS: Our results indicate that extended periods of polarized growth inhibit protein synthesis, mass accumulation, and the increase in cell size at least in part through inhibiting the TORC1 pathway. We speculate that this mechanism serves to coordinate the ability of cells to increase in size with their biosynthetic capacity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Citoesqueleto de Actina/ultraestructura , Ciclo Celular , Proliferación Celular , Biosíntesis de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
8.
Curr Opin Cell Biol ; 22(6): 795-800, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20667436

RESUMEN

Maintaining cell size homeostasis and regulating cell size in response to changing conditions is a fundamental property of organisms. Here we examine the recent advances in our understanding of the interplay between accumulation of mass (growth) and the progression through the cell cycle (proliferation), the coordination of which determines the size of cells. It is well established that growth affects cell division (reviewed in Jorgensen and Tyers, 2004). This review will focus on the reverse, less well-defined relationship-how cell cycle progression affects growth. We will summarize findings that indicate that growth is not constant during the cell cycle and discuss the surprising possibility that cyclin-dependent kinases (CDKs) inhibit growth.


Asunto(s)
División Celular/fisiología , Procesos de Crecimiento Celular/fisiología , Actinas/metabolismo , Ciclo Celular/fisiología , Polaridad Celular , Proliferación Celular , Tamaño de la Célula , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/citología , Schizosaccharomyces/fisiología
9.
J Bacteriol ; 188(15): 5595-605, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16855250

RESUMEN

DNA damage and perturbations in DNA replication can induce global transcriptional responses that can help organisms repair the damage and survive. RecA is known to mediate transcriptional responses to DNA damage in several bacterial species by inactivating the repressor LexA and phage repressors. To gain insight into how Bacillus subtilis responds to various types of DNA damage, we measured the effects of DNA damage and perturbations in replication on mRNA levels by using DNA microarrays. We perturbed replication either directly with p-hydroxyphenylazo-uracil (HPUra), an inhibitor of DNA polymerase, or indirectly with the DNA-damaging reagents mitomycin C (MMC) and UV irradiation. Our results indicate that the transcriptional responses to HPUra, MMC, and UV are only partially overlapping. recA is the major transcriptional regulator under all of the tested conditions, and LexA appears to directly repress the expression of 63 genes in 26 operons, including the 18 operons previously identified as LexA targets. MMC and HPUra treatments caused induction of an integrative and conjugative element (ICEBs1) and resident prophages (PBSX and SPbeta), which affected the expression of many host genes. Consistent with previous results, the induction of these mobile elements required recA. Induction of the phage appeared to require inactivation of LexA. Unrepaired UV damage and treatment with MMC also affected the expression of some of the genes that are controlled by DnaA. Furthermore, MMC treatment caused an increase in origin-proximal gene dosage. Our results indicate that different types of DNA damage have different effects on replication and on the global transcriptional profile.


Asunto(s)
Bacillus subtilis/genética , Daño del ADN , Replicación del ADN , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Transcripción Genética , Fagos de Bacillus/genética , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/efectos de la radiación , Bacillus subtilis/virología , Proteínas Bacterianas/genética , ADN Bacteriano/efectos de los fármacos , ADN Bacteriano/efectos de la radiación , Perfilación de la Expresión Génica , Hidroxifenilazouracilo/efectos adversos , Mitomicina/efectos adversos , Profagos/genética , Rec A Recombinasas/genética , Proteínas Represoras/genética , Serina Endopeptidasas/genética
10.
Proc Natl Acad Sci U S A ; 102(36): 12932-7, 2005 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16120674

RESUMEN

Organisms respond to perturbations in DNA replication. We characterized the global transcriptional response to inhibition of DNA replication in Bacillus subtilis. We focused on changes that were independent of the known recA-dependent global DNA damage (SOS) response. We found that overlapping sets of genes are affected by perturbations in replication elongation or initiation and that this transcriptional response serves to inhibit cell division and maintain cell viability. Approximately 20 of the operons (>50 genes) affected have potential DnaA-binding sites and are probably regulated directly by DnaA, the highly conserved replication initiation protein and transcription factor. Many of these genes have homologues and recognizable DnaA-binding sites in other bacteria, indicating that a DnaA-mediated response, elicited by changes in DNA replication status, may be conserved.


Asunto(s)
Bacillus subtilis/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Transcripción Genética/genética , Sitios de Unión , División Celular , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/genética , Operón/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rec A Recombinasas/genética
11.
J Bacteriol ; 187(22): 7655-66, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16267290

RESUMEN

The SOS response in bacteria includes a global transcriptional response to DNA damage. DNA damage is sensed by the highly conserved recombination protein RecA, which facilitates inactivation of the transcriptional repressor LexA. Inactivation of LexA causes induction (derepression) of genes of the LexA regulon, many of which are involved in DNA repair and survival after DNA damage. To identify potential RecA-LexA-regulated genes in Bacillus subtilis, we searched the genome for putative LexA binding sites within 300 bp upstream of the start codons of all annotated open reading frames. We found 62 genes that could be regulated by putative LexA binding sites. Using mobility shift assays, we found that LexA binds specifically to DNA in the regulatory regions of 54 of these genes, which are organized in 34 putative operons. Using DNA microarray analyses, we found that 33 of the genes with LexA binding sites exhibit RecA-dependent induction by both mitomycin C and UV radiation. Among these 33 SOS genes, there are 22 distinct LexA binding sites preceding 18 putative operons. Alignment of the distinct LexA binding sites reveals an expanded consensus sequence for the B. subtilis operator: 5'-CGAACATATGTTCG-3'. Although the number of genes controlled by RecA and LexA in B. subtilis is similar to that of Escherichia coli, only eight B. subtilis RecA-dependent SOS genes have homologous counterparts in E. coli.


Asunto(s)
Bacillus subtilis/genética , Respuesta SOS en Genética/genética , Región de Flanqueo 5' , Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Sitios de Unión/genética , Biología Computacional , Secuencia de Consenso , Daño del ADN , ADN Bacteriano/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Mitomicina/toxicidad , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Regiones Operadoras Genéticas , Operón , Unión Proteica , Respuesta SOS en Genética/fisiología , Homología de Secuencia de Aminoácido , Serina Endopeptidasas/metabolismo , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda