RESUMEN
Our comparative assessment is the first study to investigate microplastic body burden in native (Cambarus appalachiensis) and non-native (Faxonius cristavarius) crayfish along a semi-rural and urban stream across different seasons. Crayfish, sediment, and surface water were collected, processed, and characterized using µRaman spectroscopy to compare microplastic polymer types and shapes across compartments. Average surface water concentrations were significantly higher in our urban stream compared to our semi-rural stream (17.3 ± 2.4 particles/L and 9.9 ± 1.3 particles/L, respectively; P = 0.015). Average sediment concentrations were similar between urban and semi-rural streams (140 ± 14.5 particles/kg and 139 ± 22.5 particles/kg, respectively; P = 0.957). Our findings showed a significant interactive effect of season, site, and nativity (i.e., species) regarding microplastic body burden in crayfish (P = 0.004). The smaller, non-native crayfish amassed more microplastic particles than the native crayfish (0.4-2.0 particles/g versus 0.4-0.8 particles/g, respectively). Fibers and fragments were the most common polymer shapes across compartments, with white and black being the dominant particle colors. Our study identified 13 plastic polymer types in crayfish and three in surface water and sediment; polypropylene was the most common polymer across compartments. This study provides evidence that crayfish body burden of microplastics can differ across species, seasons, and locations, highlighting the need for future studies to consider that sublethal impacts associated with microplastic body burden may vary by region and species.