RESUMEN
An unusual but effective way to determine at threshold the dpi<-->NN transition strength alpha is to exploit the hadronic ground-state broadening Gamma(1s) in pionic deuterium, accessible by x-ray spectroscopy. The broadening is dominated by the true absorption channel dpi(-)-->nn, which is related to s-wave pion production pp-->dpi(+) by charge symmetry and detailed balance. Using the exotic atom circumvents the problem of Coulomb corrections to the cross section as necessary in the production experiments. Our dedicated measurement finds Gamma(1s)=(1171(-49)(+23)) meV yielding alpha=(252(-11)(+5)) microb.
RESUMEN
Spherically bent crystals are used as analyzers in high-resolution spectroscopy, in particular, in low count-rate applications such as exotic-atom research. The focal conditions are determined not only by the bending radius and the Bragg angle but also by the crystal cut angle between its surface and the reflecting crystal planes, along with their orientation with respect to the direction of dispersion. We describe a simple but precise method for measuring the cut angle and its orientation for mounted spherically bent crystals, by combining x-ray diffraction and laser optical alignment, which can be easily performed with standard x-ray laboratory equipment.
RESUMEN
A Doppler broadening of x-ray transitions from pionic nitrogen and muonic oxygen, which is attributed to Coulomb explosion of the molecules, has been observed by using a crystal spectrometer. Large linewidths indicate fast ionization of the molecules and a charge of (3-4)e for the accelerated fragments.
RESUMEN
The (3p-1s) x-ray transition to the muonic hydrogen ground state was measured with a high-resolution crystal spectrometer. A Doppler effect broadening of the x-ray line was established which could be attributed to different Coulomb deexcitation steps preceding the measured transition. The assumption of a statistical population of the hyperfine levels of the muonic hydrogen ground state was directly confirmed by the experiment, and measured values for the hyperfine splitting can be reported. The results allow a decisive test of advanced cascade model calculations and establish a method to extract fundamental strong-interaction parameters from pionic hydrogen experiments.
RESUMEN
We demonstrate the first step of a complete program, which consists in establishing an x-ray energy standard scale with the use of few-body atoms, in the few keV range. Light pionic and muonic atoms as well as one and two-electron ions from electron-cyclotron ion sources are used. The transition energies are calculable from quantum-electrodynamics, meaning that only a very limited subset need be measured and compared with theory, while providing a large number of standard lines. Here we show that circular transitions in pionic neon atoms, completely stripped from their electrons, reveal spectral lines which are narrow, symmetric, and well reproducible. We use these lines for the energy determination of transition energies in complex electronic systems, like the Kalpha(1,2) transitions in metallic Ti, which may serve as secondary standard.