Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Mol Cell ; 76(6): 922-937.e7, 2019 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-31604602

RESUMEN

In the arms race against bacteria, bacteriophages have evolved diverse anti-CRISPR proteins (Acrs) that block CRISPR-Cas immunity. Acrs play key roles in the molecular coevolution of bacteria with their predators, use a variety of mechanisms of action, and provide tools to regulate Cas-based genome manipulation. Here, we present structural and functional analyses of AcrIIA6, an Acr from virulent phages, exploring its unique anti-CRISPR action. Our cryo-EM structures and functional data of AcrIIA6 binding to Streptococcus thermophilus Cas9 (St1Cas9) show that AcrIIA6 acts as an allosteric inhibitor and induces St1Cas9 dimerization. AcrIIA6 reduces St1Cas9 binding affinity for DNA and prevents DNA binding within cells. The PAM and AcrIIA6 recognition sites are structurally close and allosterically linked. Mechanistically, AcrIIA6 affects the St1Cas9 conformational dynamics associated with PAM binding. Finally, we identify a natural St1Cas9 variant resistant to AcrIIA6 illustrating Acr-driven mutational escape and molecular diversification of Cas9 proteins.


Asunto(s)
Bacteriófagos/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Streptococcus thermophilus/enzimología , Proteínas Virales/metabolismo , Regulación Alostérica , Bacteriófagos/genética , Sitios de Unión , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/ultraestructura , ADN/genética , ADN/ultraestructura , Escherichia coli/enzimología , Escherichia coli/genética , Humanos , Células K562 , Cinética , Mutación , Unión Proteica , Conformación Proteica , Streptococcus thermophilus/genética , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/ultraestructura
2.
J Virol ; 98(9): e0074524, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39177355

RESUMEN

In tailed phages, the baseplate is the macromolecular structure located at the tail distal part, which is directly implicated in host recognition and cell wall penetration. In myophages (i.e., with contractile tails), the baseplate is complex and comprises a central puncturing device and baseplate wedges connecting the hub to the receptor-binding proteins (RBPs). In this work, we investigated the structures and functions of adsorption-associated tail proteins of Deep-Blue and Vp4, two Herelleviridae phages infecting members of the Bacillus cereus group. Their interest resides in their different host spectrum despite a high degree of similarity. Analysis of their tail module revealed that the gene order is similar to that of the Listeria phage A511. Among their tail proteins, Gp185 (Deep-Blue) and Gp112 (Vp4) had no structural homolog, but the C-terminal variable parts of these proteins were able to bind B. cereus strains, confirming their implication in the phage adsorption. Interestingly, Vp4 and Deep-Blue adsorption to their hosts was also shown to require polysaccharides, which are likely to be bound by the arsenal of carbohydrate-binding modules (CBMs) of these phages' baseplates, suggesting that the adsorption does not rely solely on the RBPs. In particular, the BW Gp119 (Vp4), harboring a CBM fold, was shown to effectively bind to bacterial cells. Finally, we also showed that the putative baseplate hub proteins (i.e., Deep-Blue Gp189 and Vp4 Gp110) have a bacteriolytic activity against B. cereus strains, which supports their role as ectolysins locally degrading the peptidoglycan to facilitate genome injection. IMPORTANCE: The Bacillus cereus group comprises closely related species, including some with pathogenic potential (e.g., Bacillus anthracis and Bacillus cytotoxicus). Their toxins represent the most frequently reported cause of food poisoning outbreaks at the European level. Bacteriophage research is undergoing a remarkable renaissance for its potential in the biocontrol and detection of such pathogens. As the primary site of phage-bacteria interactions and a prerequisite for successful phage infection, adsorption is a crucial process that needs further investigation. The current knowledge about B. cereus phage adsorption is currently limited to siphoviruses and tectiviruses. Here, we present the first insights into the adsorption process of Herelleviridae Vp4 and Deep-Blue myophages preying on B. cereus hosts, highlighting the importance of polysaccharide moieties in this process and confirming the binding to the host surface of Deep-Blue Gp185 and Vp4 Gp112 receptor-binding proteins and Gp119 baseplate wedge.


Asunto(s)
Fagos de Bacillus , Bacillus cereus , Bacillus cereus/virología , Bacillus cereus/metabolismo , Fagos de Bacillus/metabolismo , Fagos de Bacillus/genética , Myoviridae/genética , Myoviridae/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética , Acoplamiento Viral , Especificidad del Huésped , Polisacáridos/metabolismo
3.
J Virol ; 97(3): e0179322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36916948

RESUMEN

Although more than 12,000 bacteriophages infecting mycobacteria (mycobacteriophages) have been isolated so far, there is a knowledge gap on their structure-function relationships. Here, we have explored the architecture of host-binding machineries from seven representative mycobacteriophages of the Siphoviridae family infecting Mycobacterium smegmatis, Mycobacterium abscessus, and Mycobacterium tuberculosis, using AlphaFold2 (AF2). AF2 enables confident structural analyses of large and flexible biological assemblies resistant to experimental methods, thereby opening new avenues to shed light on phage structure and function. Our results highlight the modularity and structural diversity of siphophage host-binding machineries that recognize host-specific receptors at the onset of viral infection. Interestingly, the studied mycobacteriophages' host-binding machineries present unique features compared with those of phages infecting other Gram-positive actinobacteria. Although they all assemble the classical Dit (distal tail), Tal (tail-associated lysin), and receptor-binding proteins, five of them contain two potential additional adhesion proteins. Moreover, we have identified brush-like domains formed of multiple polyglycine helices which expose hydrophobic residues as potential receptor-binding domains. These polyglycine-rich domains, which have been observed in only five native proteins, may be a hallmark of mycobacteriophages' host-binding machineries, and they may be more common in nature than expected. Altogether, the unique composition of mycobacteriophages' host-binding machineries indicate they might have evolved to bind to the peculiar mycobacterial cell envelope, which is rich in polysaccharides and mycolic acids. This work provides a rational framework to efficiently produce recombinant proteins or protein domains and test their host-binding function and, hence, to shed light on molecular mechanisms used by mycobacteriophages to infect their host. IMPORTANCE Mycobacteria include both saprophytes, such as the model system Mycobacterium smegmatis, and pathogens, such as Mycobacterium tuberculosis and Mycobacterium abscessus, that are poorly responsive to antibiotic treatments and pose a global public health problem. Mycobacteriophages have been collected at a very large scale over the last decade, and they have proven to be valuable tools for mycobacteria genetic manipulation, rapid diagnostics, and infection treatment. Yet, molecular mechanisms used by mycobacteriophages to infect their host remain poorly understood. Therefore, exploring the structural diversity of mycobacteriophages' host-binding machineries is important not only to better understand viral diversity and bacteriophage-host interactions, but also to rationally develop biotechnological tools. With the powerful protein structure prediction software AlphaFold2, which was publicly released a year ago, it is now possible to gain structural and functional insights on such challenging assemblies.


Asunto(s)
Bacteriófagos , Micobacteriófagos , Mycobacterium tuberculosis , Siphoviridae , Micobacteriófagos/genética , Furilfuramida , Bacteriófagos/genética
4.
J Biol Chem ; 298(5): 101923, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35413290

RESUMEN

Coronavirus (CoV) genomes consist of positive-sense single-stranded RNA and are among the largest viral RNAs known to date (∼30 kb). As a result, CoVs deploy sophisticated mechanisms to replicate these extraordinarily large genomes as well as to transcribe subgenomic messenger RNAs. Since 2003, with the emergence of three highly pathogenic CoVs (SARS-CoV, MERS-CoV, and SARS-CoV-2), significant progress has been made in the molecular characterization of the viral proteins and key mechanisms involved in CoV RNA genome replication. For example, to allow for the maintenance and integrity of their large RNA genomes, CoVs have acquired RNA proofreading 3'-5' exoribonuclease activity (in nonstructural protein nsp14). In order to replicate the large genome, the viral-RNA-dependent RNA polymerase (RdRp; in nsp12) is supplemented by a processivity factor (made of the viral complex nsp7/nsp8), making it the fastest known RdRp. Lastly, a viral structural protein, the nucleocapsid (N) protein, which is primarily involved in genome encapsidation, is required for efficient viral replication and transcription. Therefore, CoVs are a paradox among positive-strand RNA viruses in the sense that they use both a processivity factor and have proofreading activity reminiscent of DNA organisms in addition to structural proteins that mediate efficient RNA synthesis, commonly used by negative-strand RNA viruses. In this review, we present a historical perspective of these unsuspected discoveries and detail the current knowledge on the core replicative machinery deployed by CoVs.


Asunto(s)
Genoma Viral , Virus ARN Monocatenarios Positivos , SARS-CoV-2 , COVID-19/virología , Genoma Viral/genética , Humanos , Mutación , Virus ARN Monocatenarios Positivos/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética
5.
Genome Res ; 30(1): 107-117, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31900288

RESUMEN

Targeting definite genomic locations using CRISPR-Cas systems requires a set of enzymes with unique protospacer adjacent motif (PAM) compatibilities. To expand this repertoire, we engineered nucleases, cytosine base editors, and adenine base editors from the archetypal Streptococcus thermophilus CRISPR1-Cas9 (St1Cas9) system. We found that St1Cas9 strain variants enable targeting to five distinct A-rich PAMs and provide a structural basis for their specificities. The small size of this ortholog enables expression of the holoenzyme from a single adeno-associated viral vector for in vivo editing applications. Delivery of St1Cas9 to the neonatal liver efficiently rewired metabolic pathways, leading to phenotypic rescue in a mouse model of hereditary tyrosinemia. These robust enzymes expand and complement current editing platforms available for tailoring mammalian genomes.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Streptococcus thermophilus/enzimología , Streptococcus thermophilus/genética , Animales , Proteína 9 Asociada a CRISPR/química , Línea Celular , Células Cultivadas , División del ADN , Humanos , Mamíferos , Ratones , Ratones Noqueados , Relación Estructura-Actividad , Especificidad por Sustrato
6.
Proc Natl Acad Sci U S A ; 116(14): 6760-6765, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30872481

RESUMEN

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.


Asunto(s)
Carbohidrato Epimerasas/química , Ácido Glucurónico/química , Heparina/química , Oligosacáridos/química , Sitios de Unión , Carbohidrato Epimerasas/genética , Catálisis , Cristalografía por Rayos X , Células HEK293 , Humanos , Relación Estructura-Actividad , Especificidad por Sustrato
7.
Biochem Soc Trans ; 48(2): 507-516, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32196554

RESUMEN

Bacteriophages (phages) and their preys are engaged in an evolutionary arms race driving the co-adaptation of their attack and defense mechanisms. In this context, phages have evolved diverse anti-CRISPR proteins to evade the bacterial CRISPR-Cas immune system, and propagate. Anti-CRISPR proteins do not share much resemblance with each other and with proteins of known function, which raises intriguing questions particularly relating to their modes of action. In recent years, there have been many structure-function studies shedding light on different CRISPR-Cas inhibition strategies. As the anti-CRISPR field of research is rapidly growing, it is opportune to review the current knowledge on these proteins, with particular emphasis on the molecular strategies deployed to inactivate distinct steps of CRISPR-Cas immunity. Anti-CRISPR proteins can be orthosteric or allosteric inhibitors of CRISPR-Cas machineries, as well as enzymes that irreversibly modify CRISPR-Cas components. This repertoire of CRISPR-Cas inhibition mechanisms will likely expand in the future, providing fundamental knowledge on phage-bacteria interactions and offering great perspectives for the development of biotechnological tools to fine-tune CRISPR-Cas-based gene edition.


Asunto(s)
Bacterias/virología , Bacteriófagos/fisiología , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Sitio Alostérico , Archaea/genética , Archaea/virología , Bacterias/genética , Evolución Molecular , Modelos Moleculares , Dominios Proteicos , Relación Estructura-Actividad
8.
Proc Natl Acad Sci U S A ; 113(47): E7483-E7489, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27834216

RESUMEN

Cut7, the sole kinesin-5 in Schizosaccharomyces pombe, is essential for mitosis. Like other yeast kinesin-5 motors, Cut7 can reverse its stepping direction, by mechanisms that are currently unclear. Here we show that for full-length Cut7, the key determinant of stepping direction is the degree of motor crowding on the microtubule lattice, with greater crowding converting the motor from minus end-directed to plus end-directed stepping. To explain how high Cut7 occupancy causes this reversal, we postulate a simple proximity sensing mechanism that operates via steric blocking. We propose that the minus end-directed stepping action of Cut7 is selectively inhibited by collisions with neighbors under crowded conditions, whereas its plus end-directed action, being less space-hungry, is not. In support of this idea, we show that the direction of Cut7-driven microtubule sliding can be reversed by crowding it with non-Cut7 proteins. Thus, crowding by either dynein microtubule binding domain or Klp2, a kinesin-14, converts Cut7 from net minus end-directed to net plus end-directed stepping. Biochemical assays confirm that the Cut7 N terminus increases Cut7 occupancy by binding directly to microtubules. Direct observation by cryoEM reveals that this occupancy-enhancing N-terminal domain is partially ordered. Overall, our data point to a steric blocking mechanism for directional reversal through which collisions of Cut7 motor domains with their neighbors inhibit their minus end-directed stepping action, but not their plus end-directed stepping action. Our model can potentially reconcile a number of previous, apparently conflicting, observations and proposals for the reversal mechanism of yeast kinesins-5.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citología , Sitios de Unión , Segregación Cromosómica , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitosis , Dominios Proteicos , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
9.
Proc Natl Acad Sci U S A ; 111(5): 1837-42, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24449904

RESUMEN

Kinesins are responsible for a wide variety of microtubule-based, ATP-dependent functions. Their motor domain drives these activities, but the molecular adaptations that specify these diverse and essential cellular activities are poorly understood. It has been assumed that the first identified kinesin--the transport motor kinesin-1--is the mechanistic paradigm for the entire superfamily, but accumulating evidence suggests otherwise. To address the deficits in our understanding of the molecular basis of functional divergence within the kinesin superfamily, we studied kinesin-5s, which are essential mitotic motors whose inhibition blocks cell division. Using cryo-electron microscopy and determination of structure at subnanometer resolution, we have visualized conformations of microtubule-bound human kinesin-5 motor domain at successive steps in its ATPase cycle. After ATP hydrolysis, nucleotide-dependent conformational changes in the active site are allosterically propagated into rotations of the motor domain and uncurling of the drug-binding loop L5. In addition, the mechanical neck-linker element that is crucial for motor stepping undergoes discrete, ordered displacements. We also observed large reorientations of the motor N terminus that indicate its importance for kinesin-5 function through control of neck-linker conformation. A kinesin-5 mutant lacking this N terminus is enzymatically active, and ATP-dependent neck-linker movement and motility are defective, although not ablated. All these aspects of kinesin-5 mechanochemistry are distinct from kinesin-1. Our findings directly demonstrate the regulatory role of the kinesin-5 N terminus in collaboration with the motor's structured neck-linker and highlight the multiple adaptations within kinesin motor domains that tune their mechanochemistries according to distinct functional requirements.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Mitosis , Modelos Moleculares , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Hidrólisis , Cinética , Microtúbulos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Relación Estructura-Actividad
10.
J Biol Chem ; 288(48): 34839-49, 2013 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-24145034

RESUMEN

Members of the kinesin superfamily of molecular motors differ in several key structural domains, which probably allows these molecular motors to serve the different physiologies required of them. One of the most variable of these is a stem-loop motif referred to as L5. This loop is longest in the mitotic kinesin Eg5, and previous structural studies have shown that it can assume different conformations in different nucleotide states. However, enzymatic domains often consist of a mixture of conformations whose distribution shifts in response to substrate binding or product release, and this information is not available from the "static" images that structural studies provide. We have addressed this issue in the case of Eg5 by attaching a fluorescent probe to L5 and examining its fluorescence, using both steady state and time-resolved methods. This reveals that L5 assumes an equilibrium mixture of three orientations that differ in their local environment and segmental mobility. Combining these studies with transient state kinetics demonstrates that there is a major shift in this distribution during transitions that interconvert weak and strong microtubule binding states. Finally, in conjunction with previous cryo-EM reconstructions of Eg5·microtubule complexes, these fluorescence studies suggest a model in which L5 regulates both nucleotide and microtubule binding through a set of reversible interactions with helix α3. We propose that these features facilitate the production of sustained opposing force by Eg5, which underlies its role in supporting formation of a bipolar spindle in mitosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cinesinas/química , Microtúbulos/ultraestructura , Mitosis/genética , Adenosina Trifosfatasas/química , Adenilil Imidodifosfato/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinesinas/genética , Cinesinas/ultraestructura , Cinética , Microscopía Electrónica , Microtúbulos/química , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
11.
J Biol Chem ; 287(53): 44654-66, 2012 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-23135273

RESUMEN

Kinesin-5 is required for forming the bipolar spindle during mitosis. Its motor domain, which contains nucleotide and microtubule binding sites and mechanical elements to generate force, has evolved distinct properties for its spindle-based functions. In this study, we report subnanometer resolution cryoelectron microscopy reconstructions of microtubule-bound human kinesin-5 before and after nucleotide binding and combine this information with studies of the kinetics of nucleotide-induced neck linker and cover strand movement. These studies reveal coupled, nucleotide-dependent conformational changes that explain many of this motor's properties. We find that ATP binding induces a ratchet-like docking of the neck linker and simultaneous, parallel docking of the N-terminal cover strand. Loop L5, the binding site for allosteric inhibitors of kinesin-5, also undergoes a dramatic reorientation when ATP binds, suggesting that it is directly involved in controlling nucleotide binding. Our structures indicate that allosteric inhibitors of human kinesin-5, which are being developed as anti-cancer therapeutics, bind to a motor conformation that occurs in the course of normal function. However, due to evolutionarily defined sequence variations in L5, this conformation is not adopted by invertebrate kinesin-5s, explaining their resistance to drug inhibition. Together, our data reveal the precision with which the molecular mechanism of kinesin-5 motors has evolved for force generation.


Asunto(s)
Cinesinas/química , Cinesinas/metabolismo , Huso Acromático/metabolismo , Sitios de Unión , Humanos , Cinesinas/genética , Cinética , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis , Modelos Moleculares , Nucleótidos/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Huso Acromático/química
12.
Viruses ; 15(12)2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38140681

RESUMEN

Bacteria are engaged in a constant battle against preying viruses, called bacteriophages (or phages). These remarkable nano-machines pack and store their genomes in a capsid and inject it into the cytoplasm of their bacterial prey following specific adhesion to the host cell surface. Tailed phages possessing dsDNA genomes are the most abundant phages in the bacterial virosphere, particularly those with long, non-contractile tails. All tailed phages possess a nano-device at their tail tip that specifically recognizes and adheres to a suitable host cell surface receptor, being proteinaceous and/or saccharidic. Adhesion devices of tailed phages infecting Gram-positive bacteria are highly diverse and, for the majority, remain poorly understood. Their long, flexible, multi-domain-encompassing tail limits experimental approaches to determine their complete structure. We have previously shown that the recently developed protein structure prediction program AlphaFold2 can overcome this limitation by predicting the structures of phage adhesion devices with confidence. Here, we extend this approach and employ AlphaFold2 to determine the structure of a complete phage, the lactococcal P335 phage TP901-1. Herein we report the structures of its capsid and neck, its extended tail, and the complete adhesion device, the baseplate, which was previously partially determined using X-ray crystallography.


Asunto(s)
Bacteriófagos , Lactococcus lactis , Siphoviridae , Siphoviridae/genética , Bacteriófagos/genética , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Cristalografía por Rayos X
13.
Int J Food Microbiol ; 407: 110414, 2023 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-37778080

RESUMEN

Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.


Asunto(s)
Bacteriófagos , Fagos de Streptococcus , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fagos de Streptococcus/genética , Sistemas CRISPR-Cas/genética , Edición Génica
14.
J Biol Chem ; 286(28): 25397-405, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21622577

RESUMEN

The SPP1 siphophage uses its long non-contractile tail and tail tip to recognize and infect the Gram-positive bacterium Bacillus subtilis. The tail-end cap and its attached tip are the critical components for host recognition and opening of the tail tube for genome exit. In the present work, we determined the cryo-electron microscopic (cryo-EM) structure of a complex formed by the cap protein gp19.1 (Dit) and the N terminus of the downstream protein of gp19.1 in the SPP1 genome, gp21(1-552) (Tal). This complex assembles two back-to-back stacked gp19.1 ring hexamers, interacting loosely, and two gp21(1-552) trimers interacting with gp19.1 at both ends of the stack. Remarkably, one gp21(1-552) trimer displays a "closed" conformation, whereas the second is "open" delineating a central channel. The two conformational states dock nicely into the EM map of the SPP1 cap domain, respectively, before and after DNA release. Moreover, the open/closed conformations of gp19.1-gp21(1-552) are consistent with the structures of the corresponding proteins in the siphophage p2 baseplate, where the Tal protein (ORF16) attached to the ring of Dit (ORF15) was also found to adopt these two conformations. Therefore, the present contribution allowed us to revisit the SPP1 tail distal-end architectural organization. Considering the sequence conservation among Dit and the N-terminal region of Tal-like proteins in Gram-positive-infecting Siphoviridae, it also reveals the Tal opening mechanism as a hallmark of siphophages probably involved in the generation of the firing signal initiating the cascade of events that lead to phage DNA release in vivo.


Asunto(s)
Bacillus subtilis/virología , Genoma Viral/fisiología , Siphoviridae/fisiología , Proteínas Estructurales Virales/metabolismo , Acoplamiento Viral , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Bacillus subtilis/ultraestructura , Estructura Terciaria de Proteína , Siphoviridae/ultraestructura , Proteínas Estructurales Virales/genética
15.
Proc Natl Acad Sci U S A ; 106(50): 21155-60, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19934032

RESUMEN

Acidianus filamentous virus 1 (AFV1), a member of the Lipothrixviridae family, infects the hyperthermophilic, acidophilic crenarchaeaon Acidianus hospitalis. The virion, covered with a lipidic outer shell, is 9,100-A long and contains a 20.8-kb linear dsDNA genome. We have identified the two major coat proteins of the virion (MCPs; 132 and 140 amino acids). They bind DNA and form filaments when incubated with linear dsDNA. A C-terminal domain is identified in their crystal structure with a four-helix-bundle fold. In the topological model of the virion filament core, the genomic dsDNA superhelix wraps around the AFV1-132 basic protein, and the AFV1-140 basic N terminus binds genomic DNA, while its lipophilic C-terminal domain is imbedded in the lipidic outer shell. The four-helix bundle fold of the MCPs from AFV1 is identical to that of the coat protein (CP) of Sulfolobus islandicus rod-shaped virus (SIRV), a member of the Rudiviridae family. Despite low sequence identity between these proteins, their high degree of structural similarity suggests that they could have derived from a common ancestor and could thus define an yet undescribed viral lineage.


Asunto(s)
Proteínas de la Cápside/química , Lipothrixviridae/química , Pliegue de Proteína , Acidianus/virología , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Genoma Viral , Lipothrixviridae/genética , Datos de Secuencia Molecular , Filogenia , Estructura Secundaria de Proteína , Homología Estructural de Proteína , Sulfolobus/química
16.
Front Mol Biosci ; 9: 907452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35615740

RESUMEN

In 2021, the release of AlphaFold2 - the DeepMind's machine-learning protein structure prediction program - revolutionized structural biology. Results of the CASP14 contest were an immense surprise as AlphaFold2 successfully predicted 3D structures of nearly all submitted protein sequences. The AlphaFold2 craze has rapidly spread the life science community since structural biologists as well as untrained biologists have now the possibility to obtain high-confidence protein structures. This revolution is opening new avenues to address challenging biological questions. Moreover, AlphaFold2 is imposing itself as an essential step of any structural biology project, and requires us to revisit our structural biology workflows. On one hand, AlphaFold2 synergizes with experimental methods including X-ray crystallography and cryo-electron microscopy. On the other hand, it is, to date, the only method enabling structural analyses of large and flexible assemblies resistant to experimental approaches. We illustrate this valuable application of AlphaFold2 with the structure prediction of the whole host adhesion device from the Lactobacillus casei bacteriophage J-1. With the ongoing improvement of AlphaFold2 algorithms and notebooks, there is no doubt that AlphaFold2-driven biological stories will increasingly be reported, which questions the future directions of experimental structural biology.

17.
Viruses ; 14(7)2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35891516

RESUMEN

Hepatitis E virus (HEV) is a major cause of acute viral hepatitis in humans globally. Considered for a long while a public health issue only in developing countries, the HEV infection is now a global public health concern. Most human infections are caused by the HEV genotypes 1, 2, 3 and 4 (HEV-1 to HEV-4). Although HEV-3 and HEV-4 can evolve to chronicity in immunocompromised patients, HEV-1 and HEV-2 lead to self-limited infections. HEV has a positive-sense single-stranded RNA genome of ~7.2 kb that is translated into a large pORF1 replicative polyprotein, essential for the viral RNA genome replication and transcription. Unfortunately, the composition and structure of these replicases are still unknown. The recent release of the powerful machine-learning protein structure prediction software AlphaFold2 (AF2) allows us to accurately predict the structure of proteins and their complexes. Here, we used AF2 with the replicase encoded by the polyprotein pORF1 of the human-infecting HEV-3. The boundaries and structures reveal five domains or nonstructural proteins (nsPs): the methyltransferase, Zn-binding domain, macro, helicase, and RNA-dependent RNA polymerase, reliably predicted. Their substrate-binding sites are similar to those observed experimentally for other related viral proteins. Precisely knowing enzyme boundaries and structures is highly valuable to recombinantly produce stable and active proteins and perform structural, functional and inhibition studies.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Furilfuramida/metabolismo , Virus de la Hepatitis E/genética , Humanos , Poliproteínas/genética , Poliproteínas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/genética
18.
Microorganisms ; 10(11)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36422348

RESUMEN

Bacteriophages, or phages, are the most abundant biological entities on Earth. They possess molecular nanodevices to package and store their genome, as well as to introduce it into the cytoplasm of their bacterial prey. Successful phage infection commences with specific recognition of, and adhesion to, a suitable host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limit their structural analyses by experimental approaches. The protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of adhesion devices from siphophages belonging to the P335 group infecting Lactococcus spp., one of the most extensively applied lactic acid bacteria in dairy fermentations. The predictions of representative adhesion devices from types I-IV P335 phages illustrate their very diverse topology. Adhesion devices from types III and IV phages share a common topology with that of Skunavirus p2, with a receptor binding protein anchored to the virion by a distal tail protein loop. This suggests that they exhibit an activation mechanism similar to that of phage p2 prior to host binding.

19.
Front Mol Biosci ; 9: 960325, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060267

RESUMEN

Successful bacteriophage infection starts with specific recognition and adhesion to the host cell surface. Adhesion devices of siphophages infecting Gram-positive bacteria are very diverse and remain, for the majority, poorly understood. These assemblies often comprise long, flexible, and multi-domain proteins, which limits their structural analyses by experimental approaches such as X-ray crystallography and electron microscopy. However, the protein structure prediction program AlphaFold2 is exquisitely adapted to unveil structural and functional details of such molecular machineries. Here, we present structure predictions of whole adhesion devices of five representative siphophages infecting Streptococcus thermophilus, one of the main lactic acid bacteria used in dairy fermentations. The predictions highlight the mosaic nature of these devices that share functional domains for which active sites and residues could be unambiguously identified. Such AlphaFold2 analyses of phage-encoded host adhesion devices should become a standard method to characterize phage-host interaction machineries and to reliably annotate phage genomes.

20.
Nat Commun ; 13(1): 2802, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589712

RESUMEN

CRISPR-Cas systems in prokaryotic cells provide an adaptive immunity against invading nucleic acids. For example, phage infection leads to addition of new immunity (spacer acquisition) and DNA cleavage (interference) in the bacterial model species Streptococcus thermophilus, which primarily relies on Cas9-containing CRISPR-Cas systems. Phages can counteract this defense system through mutations in the targeted protospacers or by encoding anti-CRISPR proteins (ACRs) that block Cas9 interference activity. Here, we show that S. thermophilus can block ACR-containing phages when the CRISPR immunity specifically targets the acr gene. This in turn selects for phage mutants carrying a deletion within the acr gene. Remarkably, a truncated acrIIA allele, found in a wild-type virulent streptococcal phage, does not block the interference activity of Cas9 but still prevents the acquisition of new immunities, thereby providing an example of an ACR specifically inhibiting spacer acquisition.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Bacteriófagos/genética , Streptococcus thermophilus/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda