Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Chem Chem Phys ; 26(33): 21982-21989, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39108196

RESUMEN

The solar cell and light-emitting device research community is currently focusing on investigating two-dimensional (2D) hybrid perovskite materials owing to their remarkable stability and intriguing optoelectronic characteristics, which hold significant promise for various applications. In general, the introduction of chirality in hybrid perovskites arises from symmetry breaking within their inorganic frameworks. Nevertheless, despite this understanding, the specific factors driving the observed increase in splitting remain obscure due to a lack of comprehensive investigations. Our research delves into the electronic properties of 2D layered hybrid perovskites, considering their behavior with and without spin-orbit coupling. We specifically focus on effect of Rashba splitting and the impact of electronic structure variation across a range of chiral perovskites by introducing chiral organic cations with differing degrees of π-conjugation, resulting in significant changes in spin-splitting magnitude. Systematic first principles investigations confirm that the distortion of the cage and d-spacing of chiral perovskites are crucial design parameters for achieving strong spin-splitting in 2D layered perovskites. Furthermore, our investigation reveals that these systems exhibit remarkable absorption capabilities in the visible light spectrum, as demonstrated by their computed optoelectronic characteristics. The chiral perovskites described in this study, which exhibit substantial spin-splitting, present a distinctive prototype with potential implications for spintronics and photovoltaics.

2.
J Enzyme Inhib Med Chem ; 37(1): 151-167, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894940

RESUMEN

An efficient pathway was disclosed for the synthesis of 3-chloro-6-nitro-1H-indazole derivatives by 1,3-dipolar cycloaddition on dipolarophile compounds 2 and 3. Faced the problem of separation of two regioisomers, a click chemistry method has allowed us to obtain regioisomers of triazole-1,4 with good yields from 82 to 90% were employed. Also, the antileishmanial biological potency of the compounds was achieved using an MTT assay that reported compound 13 as a promising growth inhibitor of Leishmania major. Molecular docking demonstrated highly stable binding with the Leishmania trypanothione reductase enzyme and produced a network of hydrophobic and hydrophilic interactions. Molecular dynamics simulations were performed for TryR-13 complex to understand its structural and intermolecular affinity stability in a biological environment. The studied complex remained in good equilibrium with a structure deviation of ∼1-3 Å. MM/GBSA binding free energies illustrated the high stability of TryR-13 complex. The studied compounds are promising leads for structural optimisation to enhance the antileishmanial activity.


Asunto(s)
Antiprotozoarios/farmacología , Inhibidores Enzimáticos/farmacología , Indazoles/farmacología , Leishmania major/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Indazoles/síntesis química , Indazoles/química , Leishmania major/enzimología , Modelos Moleculares , Estructura Molecular , NADH NADPH Oxidorreductasas/antagonistas & inhibidores , NADH NADPH Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Relación Estructura-Actividad
3.
Int J Biol Macromol ; 272(Pt 1): 132810, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38825288

RESUMEN

Different concentrations of zirconium with a fixed quantity (4 wt%) of chitosan (CS) doped nickel cobaltite (NiCo2O4) nanorods were synthesized using a co-precipitation approach. This cutting-edge research explores the cooperative effect of Zr-doped CS-NiCo2O4 to degrade the Eriochrome black T (EBT) and investigates potent antibacterial activity against Staphylococcus aureus (S. aureus). Advanced characterization techniques were conducted to analyze structural textures, morphological analysis, and optical characteristics of synthesized materials. XRD pattern unveiled the spinal cubic structure of NiCo2O4, incorporating Zr and CS peak shifted to a lower 2θ value. UV-Vis spectroscopy revealed the absorption range increased with CS and the same trend was observed upon Zr, showing a decrease in bandgap energy (Eg) from 2.55 to 2.4 eV. The optimal photocatalytic efficacy of doped NiCo2O4 within the basic medium was around 96.26 %, and bactericidal efficacy was examined against S. aureus, revealing a remarkable inhibition zone (5.95 mm).


Asunto(s)
Antibacterianos , Quitosano , Colorantes , Nanotubos , Staphylococcus aureus , Circonio , Quitosano/química , Quitosano/farmacología , Circonio/química , Circonio/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Nanotubos/química , Colorantes/química , Níquel/química , Cobalto/química , Pruebas de Sensibilidad Microbiana , Compuestos Azo/química
4.
RSC Adv ; 14(3): 1924-1938, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192318

RESUMEN

The remarkable performance of copper indium gallium selenide (CIGS)-based double heterojunction (DH) photovoltaic cells is presented in this work. To increase all photovoltaic performance parameters, in this investigation, a novel solar cell structure (FTO/SnS2/CIGS/Sb2S3/Ni) is explored by utilizing the SCAPS-1D simulation software. Thicknesses of the buffer, absorber and back surface field (BSF) layers, acceptor density, defect density, capacitance-voltage (C-V), interface defect density, rates of generation and recombination, operating temperature, current density, and quantum efficiency have been investigated for the proposed solar devices with and without BSF. The presence of the BSF layer significantly influences the device's performance parameters including short-circuit current (Jsc), open-circuit voltage (Voc), fill factor (FF), and power conversion efficiency (PCE). After optimization, the simulation results of a conventional CIGS cell (FTO/SnS2/CIGS/Ni) have shown a PCE of 22.14% with Voc of 0.91 V, Jsc of 28.21 mA cm-2, and FF of 86.31. Conversely, the PCE is improved to 31.15% with Voc of 1.08 V, Jsc of 33.75 mA cm-2, and FF of 88.50 by introducing the Sb2S3 BSF in the structure of FTO/SnS2/CIGS/Sb2S3/Ni. These findings of the proposed CIGS-based double heterojunction (DH) solar cells offer an innovative method for realization of high-efficiency solar cells that are more promising than the previously reported traditional designs.

5.
ACS Omega ; 8(41): 38170-38177, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37867653

RESUMEN

In this research, we present a comprehensive study on the influence of layer-dependent structural, electronic, and optical properties in the two-dimensional (2D) Ruddlesden-Popper (RP) perovskite Cs2PbI2Br2. Employing first-principles computations within the density functional theory method, including spin orbit coupling contribution, we examine the impact of various factors on the material. Our results demonstrate that the predicted 2D-layered RP perovskite Cs2PbI2Br2 structures exhibit remarkable stability both structurally and energetically, making them promising candidates for experimental realization. Furthermore, we observe that the electronic band gap and optical absorption coefficients of Cs2PbI2Br2 strongly depend on the thickness variation of the layers. Interestingly, Cs2PbI2Br2 exhibits a notable absorption coefficient in the visible region. Using a combination of density functional theory and Boltzmann transport theory, the thermoelectric properties were forecasted. The calculation involved determining the Seebeck coefficient (S) and other associated thermoelectric characteristics, such as electronic and thermal conductivities, as they vary with the chemical potential at room temperature. These findings open up exciting opportunities for the application of this 2D RP perovskite in solar cells and thermoelectric devices, owing to its unique properties.

6.
J Biomol Struct Dyn ; 41(20): 10377-10387, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541102

RESUMEN

There is a daunting public health emergency due to the emergence and rapid global spread of the new omicron variants of SARS-CoV-2. The variants differ in many characteristics, such as transmissibility, antigenicity and the immune system of the human hosts' shifting responses. This change in characteristics raises concern, as it leads to unknown consequences and also raises doubts about the efficacy of the currently available vaccines. As of March 2022, there are five variants of SARS-CoV-2 disseminating: the alpha, the beta, the gamma, the delta and the omicron variant. The omicron variant has more than 30 mutations on the spike protein, which is used by the virus to enter the host cell and is also used as a target for the vaccines. In this work, we studied the possible anti-COVID-19 effect of two molecules by molecular docking using Autodock Vina and molecular dynamic simulations using Gromacs 2020 software. We docked amoxicillin and clavulanate to the main protease (Mpro), the RNA-dependent RNA polymerase (RdRp) and the spike protein receptor-binding domain (SRBD) of the wild type with the two variants (delta and omicron) of SARS-CoV-2. The docking results show that the ligands bound tightly with the SRBD of the omicron variant, while the dynamic simulation revealed the ability of amoxicillin to bind to the SRBD of both variants' delta and omicron. The high number of mutations that occurred in both variants increases the affinity of amoxicillin towards them.Communicated by Ramaswamy H. Sarma.


Asunto(s)
COVID-19 , Vacunas , Humanos , Antibacterianos , Simulación del Acoplamiento Molecular , SARS-CoV-2/genética , Reposicionamiento de Medicamentos , Glicoproteína de la Espiga del Coronavirus/genética , Amoxicilina
7.
Heliyon ; 9(4): e14874, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37151626

RESUMEN

For the first time, sol-gel spin coating was used to fabricate thin films of NiO doped with lutetium. The films were characterized to determine their crystalline structure, surface morphology, and optical properties as a function of Lu doping concentration. The investigations revealed that the Lu-doped NiO films consisted of nano-polycrystalline particles with a cubic bunsenite structure and (200) preferential orientation. Optical studies indicated that the optical band gap of pure NiO widened with low levels of Lu incorporation before narrowing with higher concentrations. The Urbach energy value for pure NiO initially decreased with 1 at. % Lu-content, from 224 meV to 190 meV, and then continuously increased to 380 meV with more Lu-level. To investigate the effects of Lu doping on the electronics, magnetic, and optical properties of NiO, first-principle computations were performed. The results showed that bulk magnetization underwent significant modifications due to a high hybridization between the Lu-f/d and Ni-d states. This study suggests that NiO doped with lutetium could be used for spin-polarized transport devices and other spin-dependent applications.

8.
Materials (Basel) ; 16(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37048955

RESUMEN

The exact control of material properties essential for solar applications has been made possible because of perovskites' compositional engineering. However, tackling efficiency, stability, and toxicity at the same time is still a difficulty. Mixed lead-free and inorganic perovskites have lately shown promise in addressing these problems, but their composition space is vast, making it challenging to find good candidates even with high-throughput approaches. We investigated two groups of halide perovskite compound data with the ABX3 formula to investigate the formation energy data for 81 compounds. The structural stability was analyzed over 63 compounds. For these perovskites, we used new library data extracted from a calculation using generalized-gradient approximation within the Perdew-Burke-Ernzerhof (PBE) functional established on density functional theory. As a second step, we built machine learning models, based on a kernel-based naive Bayes algorithm that anticipate a variety of target characteristics, including the mixing enthalpy, different octahedral distortions, and band gap calculations. In addition to laying the groundwork for observing new perovskites that go beyond currently available technical uses, this work creates a framework for finding and optimizing perovskites in a photovoltaic application.

9.
RSC Adv ; 13(16): 10861-10872, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37033429

RESUMEN

In the present study, different concentrations (1 and 3%) of Bi were incorporated into a fixed amount of molybdenum disulfide (MoS2) and SnO2 quantum dots (QDs) by co-precipitation technique. This research aimed to increase the efficacy of dye degradation and bactericidal behavior of SnO2. The high recombination rate of SnO2 can be decreased upon doping with two-dimensional materials (MoS2 nanosheets) and Bi metal. These binary dopants-based SnO2 showed a significant role in methylene blue (MB) dye degradation in various pH media and antimicrobial potential as more active sites are provided by nanostructured MoS2 and Bi3+ is responsible for producing a variety of different oxygen vacancies within SnO2. The prepared QDs were described via morphology, optical characteristics, elemental composition, functional group, phase formation, crystallinity, and d-spacing. In contrast, antimicrobial activity was checked at high and low dosages against Escherichia coli (E. coli) and the inhibition zone was calculated utilizing a Vernier caliper. Furthermore, prepared samples have expressed substantial antimicrobial effects against E. coli. To further explore the interactions between the MB and Bi/MoS2-SnO2 composite, we modeled and calculated the MB adsorption using density functional theory and the Heyd-Scuseria-Ernzerhof hybrid (HSE06) approach. There is a relatively strong interaction between the MB molecule and Bi/MoS2-SnO2 composite.

10.
J King Saud Univ Sci ; 35(4): 102628, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36908997

RESUMEN

In the present work, we describe the extraction of a natural product namely 1,4,9,9-tetramethyloctahydro-4,7-(epoxymethano)azulen-5(1H)-one, and its structure was confirmed by single crystal X-ray diffraction analysis. The conformations of the 5-, 6-, and 7-membered rings in the title compound, C15H24O2, have been probed by a Cremer-Pople puckering analysis. C-H···O hydrogen bonds generate chains in the crystal that stretch along the c-axis direction. The Hirshfeld surface analysis method was used to stabilize the crystal packing of the natural compound. Accompanied by experimental studies, quantum chemical calculations were also performed to compare the structural elucidation and the results of these geometrical parameters exhibited excellent agreement. The compound was also docked with several drug targets of the SARS-CoV-2 virus and found to show the best binding with the main protease enzyme, having a binding energy of -12.31 kcal/mol and interacting with His41 and Cys145 residues. The dynamic stability deciphered the complex to be stable with an average RMSD of 3.8 Å. The compound dynamics with the enzyme showed the compound conformation to be highly stable. The intermolecular binding free energy determined the compound-main protease enzyme to show high interaction energy of < 40 kcal/mol. Together, these studies demonstrate the compound to be a lead structure against SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda