Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cureus ; 16(3): e55472, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38571817

RESUMEN

Background In this research, iron oxide nanoparticles were synthesized using Coleus amboinicus stem extract, which is used for various diseases such as throat infection, cough, fever, nasal congestion, and digestive problems.  Aim This study aimed to formulate a green synthesis of iron oxide nanoparticles mediated by Coleus amboinicus (known as karpuravalli in Tamil) and assess its antimicrobial and antioxidant properties.  Materials and methods Iron oxide nanoparticles were synthesized, and then their antimicrobial properties were tested against two specific pathogens, i.e., Streptococcus mutans and Candida albicans, using the agar well diffusion technique. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, hydroxyl radical scavenging (H2O2) assay, and ferric ion reducing antioxidant power (FRAP) assay were conducted to check the free radical scavenging activity.  Result The results obtained showed that these iron oxide nanoparticles showed better antimicrobial activity against Streptococcus mutans when compared to Candida albicans, and the antioxidant activity showed a very close efficacy when compared to the standard.  Conclusion The research has demonstrated the high antioxidant activity and high antibacterial activity of iron oxide nanoparticles using Coleus amboinicus stem, a natural and cheaper antimicrobial drug compared to the drugs present on the market.

2.
J Pharm Bioallied Sci ; 16(Suppl 2): S1335-S1339, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38882793

RESUMEN

Background: Considerable focus has been directed toward green synthesis as a dependable, sustainable, and environmentally friendly approach for synthesizing various nanomaterials. Mimosa pudica, a quickly grown pantropical weed, has been used widely for its anti-inflammatory and antimicrobial activity in traditional medicine. The development of strontium-based nanoparticles and nanoparticles linked with strontium has garnered attention in recent years due to their established utility in diverse domains such as effective drug distribution, bioimaging, cancer treatment, and advancements in bone engineering. Aims and Objectives: To examine the green synthesise of strontium nanoparticles using Mimosa pudica and its anti-inflammatory activity. Material and Methods: Mimosa pudica-mediated strontium nanoparticles' anti-inflammatory activity was tested using bovine serum albumin denaturation assay, egg albumin denaturation assay, and membrane stabilization assay with diclofenac sodium as the standard. Result: In all three assays, increasing concentration of Mimosa pudica-mediated strontium nanoparticles exhibited an increasing anti-inflammatory effect, which was similar to the standard diclofenac sodium. Conclusion: Consequently, this holds promise as a new potential anti-inflammatory agent in forthcoming applications.

3.
Cureus ; 16(2): e53671, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38455834

RESUMEN

Introduction Nanotechnology holds considerable importance in biomedical and dental applications. Nanoparticles synthesized using green synthesis methods with herbal formulations offer various benefits to humans. Zinc oxide nanoparticles (ZnONPs), being semiconductors, exhibit potent antibacterial properties. Notably, treatments utilizing lemongrass and mint ensure potentially lower toxicity and antibacterial qualities for oral infections. The goal of the study is to prepare a mouthwash mediated by ZnONPs and assess its cytotoxic potential and antibacterial efficacy. Materials and methods A lemongrass and mint formulation was used in the synthesis of ZnONPs, and the mouthwash was prepared using the synthesized nanoparticles. The produced ZnONPs were tested for their antimicrobial activity using agar well diffusion technique against oral pathogens, and the ZnONPs-mediated mouthwash was evaluated for its cytotoxic effect using the brine shrimp lethality assay and compared to commercial mouthwash.  Results The green-synthesized ZnONPs were initially confirmed using a UV-visible spectrophotometer and exhibited a maximum peak at 362 nm. The antimicrobial activity was tested for the synthesized ZnONPs against oral pathogens, which showed a maximum zone of inhibition of 22 mm in Enterococcus faecalis and 23 mm in Candida albicans, as estimated by the agar well diffusion technique. Additionally, ZnONPs-based herbal mouthwash demonstrated lower cytotoxicity than the commercial mouthwash in the brine shrimp lethality assay. Conclusion In the current study, lemongrass and mint-mediated ZnONPs demonstrated an effective antibacterial activity against E. faecalis and antifungal activity against C. albicans. Furthermore, the cytotoxic effect tested using the brine shrimp lethality assay for ZnONPs-mediated mouthwash demonstrated lower toxicity as compared to the commercial mouthwash. This suggests that the green-synthesized ZnONPs-based mouthwash could be used as an alternative to synthetic mouthwash.

4.
Cureus ; 16(2): e53489, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38440044

RESUMEN

Aim This study aimed to compare the antidiabetic effect of metal oxide nanoparticles (CuONPs and ZnONPs) prepared using lemongrass and mint herbal formulations. Introduction The study explores green-synthesized nanoparticles for potential applications in diabetes management, emphasizing sustainable synthesis methods, particularly zinc oxide nanoparticles (ZnONPs) and copper oxide nanoparticles (CuONPs) produced from lemongrass and mint herbal formulations. The study was prompted by the increasing importance of innovative therapeutic strategies, responding to emerging health challenges, and leveraging advancements in nanotechnology and eco-friendly practices to explore the potential of green-synthesized nanoparticles in diabetes management. Methods The methods involve herbal formulation preparation, CuONPs and ZnONPs synthesis, and UV-visible spectrophotometry for characterization. In vitro antidiabetic activity is assessed through α-amylase and ß-glucosidase enzyme assays using varied nanoparticle concentrations (10-50 µL). Results Visual observations confirm successful synthesis, with distinct color changes observed in both CuONPs and ZnONPs after 24 hours. UV-visible spectrophotometry reveals absorption peaks at 440 nm and 380 nm for CuONPs and ZnONPs, respectively. In the α-amylase assay, both nanoparticles exhibit concentration-dependent inhibition, with CuONPs ranging from 40% to 77% and ZnONPs ranging from 36% to 80%. The ß-glucosidase assay demonstrates similar concentration-dependent inhibition patterns, highlighting significant differences. Conclusion The study concludes that CuONPs and ZnONPs synthesis using lemongrass and mint herbal formulations show concentration-dependent antidiabetic activity. The comparative analysis underscores the need for tailored approaches based on nanoparticle composition. These findings contribute valuable insights into the therapeutic potential of green-synthesized nanoparticles, paving the way for future nanomedicine research and development in diabetes management.

5.
Cureus ; 15(11): e48332, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38060706

RESUMEN

Background Mouth paint is a liquid oral care solution applied topically to the mouth, formulated to address oral health concerns like bacterial infections, inflammation, and bad breath. To improve the effectiveness of oral healthcare, nanomaterials are utilized in many dental products. Titanium dioxide nanoparticles (TiO2NPs) exert their antimicrobial effects through mechanisms like producing reactive oxygen species and direct interaction with microbial cells. The current study explored the antimicrobial, anti-inflammatory, and cytotoxic effects of the mouth paint prepared using TiO2NPs using an aqueous formulation of lemongrass and dry ginger. Methods Mouthpaint prepared using TiO2NPs synthesized using lemongrass and ginger was prepared and tested for potential applications. The antimicrobial activity of the prepared TiO2NPs-mediated mouth paint at different concentrations (25, 50, and 100 µL) against oral pathogens (Streptococcus mutans, Enterococcus faecalis, Staphylococcus aureus, and Candida albicans) was evaluated using the Agar well diffusion method. The anti-inflammatory activity of the produced mouth paint was examined using a bovine serum albumin denaturation assay and an egg albumin denaturation assay. The cytotoxic effect of the produced mouthpaint was analyzed using a brine shrimp lethality assay.  Results Green synthesized TiO2NPs showed potent antimicrobial activity against the tested oral pathogens by exhibiting a zone of inhibition of 11 mm on Petriplate against Staphylococcus aureus and Candida albicans at 100 µL concentration. The prepared nanoparticles-mediated mouth paint possesses significant anti-inflammatory activity by effectively preventing the denaturation of bovine serum albumin, with a 74% inhibition at a concentration of 50 µL. The egg albumin denaturation assay showed a percentage inhibition of 80% at 50 µL. At the lowest concentration of 5 µL of the prepared mouth paint, 90% of the nauplii (egg-to-larvae stage of brine shrimp) remained alive after 48 hours. Conclusion The results showed that mouthpaint prepared using titanium dioxide nanoparticles synthesized using lemongrass and dry ginger formulations possessed significant antimicrobial activity and also displayed potential anti-inflammatory activity. The prepared mouth paint also displayed less toxicity, and hence, it can be used as an alternative to the commercially available synthetic mouth paint, which has more side effects.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda