RESUMEN
We report on high pressure small angle x-ray scattering on suspensions of colloidal crystallites in water. The crystallites made out of charge-stabilized poly-acrylate particles exhibit a complex pressure dependence which is based on the specific pressure properties of the suspending medium water. The dominant effect is a compression of the crystallites caused by the compression of the water. In addition, we find indications that also the electrostatic properties of the system, i.e. the particle charge and the dissociation of ions, might play a role for the pressure dependence of the samples. The data further suggest that crystallites in a metastable state induced by shear-induced melting can relax to a similar structural state upon the application of pressure and dilution with water. X-ray cross correlation analysis of the two-dimensional scattering patterns indicates a pressure-dependent increase of the orientational order of the crystallites correlated with growth of these in the suspension. This study underlines the potential of pressure as a very relevant parameter to understand colloidal crystallite systems in aqueous suspension.
RESUMEN
A method to characterize the spatial coherence of soft X-ray radiation from a single diffraction pattern is presented. The technique is based on scattering from non-redundant arrays (NRAs) of slits and records the degree of spatial coherence at several relative separations from 1 to 15â µm, simultaneously. Using NRAs the spatial coherence of the X-ray beam at the XUV X-ray beamline P04 of the PETRAâ III synchrotron storage ring was measured as a function of different beam parameters. To verify the results obtained with the NRAs, additional Young's double-pinhole experiments were conducted and showed good agreement.
RESUMEN
The single shot based coherence properties of hard x-ray pulses from the Linac Coherent Light Source (LCLS) were measured by analyzing coherent diffraction patterns from nano-particles and gold nanopowder. The intensity histogram of the small angle x-ray scattering ring from nano-particles reveals the fully transversely coherent nature of the LCLS beam with a number of transverse mode ãMsã = 1.1. On the other hand, the speckle contrasts measured at a large wavevector yields information about the longitudinal coherence of the LCLS radiation after a silicon (111) monochromator. The quantitative agreement between our data and the simulation confirms a mean coherence time of 2.2 fs and a x-ray pulse duration of 29 fs. Finally the observed reduction of the speckle contrast generated by x-rays with pulse duration longer than 30 fs indicates ultrafast dynamics taking place at an atomic length scale prior to the permanent sample damage.
RESUMEN
We present results of single-shot resonant magnetic scattering experiments of Co/Pt multilayer systems using 100 fs long ultraintense pulses from an extreme ultraviolet (XUV) free-electron laser. An x-ray-induced breakdown of the resonant magnetic scattering channel during the pulse duration is observed at fluences of 5 J/cm(2). Simultaneously, the speckle contrast of the high-fluence scattering pattern is significantly reduced. We performed simulations of the nonequilibrium evolution of the Co/Pt multilayer system during the XUV pulse duration. We find that the electronic state of the sample is strongly perturbed during the first few femtoseconds of exposure leading to an ultrafast quenching of the resonant magnetic scattering mechanism.
RESUMEN
An x-ray transfocator design for the combined use of 1D and 2D compound refractive lenses is described. The device includes stacks of beryllium parabolic lenses with different radii of curvature and provides microfocused x-ray beams in the 4-20 keV photon energy range. The transfocator has been implemented at the P10 Coherence Beamline of the PETRA III synchrotron at DESY, Hamburg. Results of transfocator performance and applications for coherent x-ray scattering experiments are presented.
Asunto(s)
Lentes , Refractometría/instrumentación , Sincrotrones/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , MiniaturizaciónRESUMEN
The availability of ultrafast pulses of coherent hard x rays from the Linac Coherent Light Source opens new opportunities for studies of atomic-scale dynamics in amorphous materials. Here, we show that single ultrafast coherent x-ray pulses can be used to observe the speckle contrast in the high-angle diffraction from liquid Ga and glassy Ni(2)Pd(2)P and B(2)O(3). We determine the thresholds above which the x-ray pulses disturb the atomic arrangements. Furthermore, high contrast speckle is observed in scattering patterns from the glasses integrated over many pulses, demonstrating that the source and optics are sufficiently stable for x-ray photon correlation spectroscopy studies of dynamics over a wide range of time scales.
Asunto(s)
Vidrio/química , Modelos Teóricos , Difracción de Rayos X/métodos , Compuestos de Boro/química , Galio/química , Níquel/química , Paladio/química , Fósforo/química , FotonesRESUMEN
We measured the transverse and longitudinal coherence properties of the Linac Coherent Light Source (LCLS) at SLAC in the hard x-ray regime at 9 keV photon energy on a single shot basis. Speckle patterns recorded in the forward direction from colloidal nanoparticles yielded the transverse coherence properties of the focused LCLS beam. Speckle patterns from a gold nanopowder recorded with atomic resolution allowed us to measure the shot-to-shot variations of the spectral properties of the x-ray beam. The focused beam is in the transverse direction fully coherent with a mode number close to 1. The average number of longitudinal modes behind the Si(111) monochromator is about 14.5 and the average coherence time τ(c)=(2.0±1.0) fc. The data suggest a mean x-ray pulse duration of (29±14) fs behind the monochromator for (100±14) fc electron pulses.
Asunto(s)
Oro/química , Luz , Nanopartículas del Metal/química , Modelos Teóricos , Nanoestructuras/química , Fotones , Electrones , Aceleradores de Partículas , Dispersión de Radiación , Rayos XRESUMEN
We introduce the setup of a versatile sample chamber for x-ray scattering experiments on liquids delivered by µ-jets. The simple implementation at x-ray light sources, adaptability to different nozzle types, and the availability of a microscope for observation of the jet flow allow for its broad application. In combination with an inbuilt recycling circle, a continuous flow operation is provided. Functionality of the system was demonstrated in a rheology study at PETRA III.
RESUMEN
The imaging of hydrated biological samples - especially in the energy window of 284-540 eV, where water does not obscure the signal of soft organic matter and biologically relevant elements - is of tremendous interest for life sciences. Free-electron lasers can provide highly intense and coherent pulses, which allow single pulse imaging to overcome resolution limits set by radiation damage. One current challenge is to match both the desired energy and the intensity of the light source. We present the first images of dehydrated biological material acquired with 3rd harmonic radiation from FLASH by digital in-line zone plate holography as one step towards the vision of imaging hydrated biological material with photons in the water window. We also demonstrate the first application of ultrathin molecular sheets as suitable substrates for future free-electron laser experiments with biological samples in the form of a rat fibroblast cell and marine biofouling bacteria Cobetia marina.
Asunto(s)
Bacterias/citología , Electrones , Fibroblastos/citología , Holografía/métodos , Rayos Láser , Microscopía/métodos , Agua/química , Animales , Nanoestructuras , Ratas , Agua de Mar/microbiología , Rayos XRESUMEN
Results of a x-ray photon correlation spectroscopy experiment on the very weakly first order martensitic transformation of a Au50.5Cd49.5 single crystal are presented. Slow non-equilibrium-dynamics are observed in a narrow temperature interval in the direct vicinity of the otherwise athermal phase transformation. These dynamics are associated with the martensite-aging effect. The dynamical aging is accompanied by an avalanchelike behavior which is identified with an incubation-time phenomenon.
RESUMEN
We report on experiments using Fourier transform holography to image the in-plane magnetization of a magnetic microstructure. Magnetic sensitivity is achieved via the x-ray magnetic circular dichroism effect by recording holograms in transmission at off-normal incidence. The reference beam is defined by a narrow hole milled at an inclined angle into the opaque mask. We present magnetic domain images of an in-plane magnetized cobalt element with a size of 2 µm × 2 µm× 20 nm. The domain pattern shows a multi-vortex state that deviates from the simple Landau ground state.
Asunto(s)
Dicroismo Circular/instrumentación , Dicroismo Circular/métodos , Cobalto/química , Holografía/instrumentación , Holografía/métodos , Magnetismo/instrumentación , Algoritmos , Diseño de Equipo , Análisis de Falla de EquipoRESUMEN
Residual stresses are well-known companions of all glassy materials. They affect and, in many cases, even strongly modify important material properties like the mechanical response and the optical transparency. The mechanisms through which stresses affect such properties are, in many cases, still under study, and their full understanding can pave the way to a full exploitation of stress as a primary control parameter. It is, for example, known that stresses promote particle mobility at small length scales, e.g., in colloidal glasses, gels, and metallic glasses, but this connection still remains essentially qualitative. Exploiting a preparation protocol that leads to colloidal glasses with an exceptionally directional built-in stress field, we characterize the stress-induced dynamics and show that it can be visualized as a collection of "flickering," mobile regions with linear sizes of the order of ≈20 particle diameters (≈2 µm here) that move cooperatively, displaying an overall stationary but locally ballistic dynamics.
RESUMEN
We applied shear to a silica nanoparticle dispersion in a microfluidic jet device and observed direction-dependent structure along and across the flow direction. The asymmetries of the diffraction patterns were evaluated by x-ray cross correlation analysis. For different Rayleigh nozzle sizes and shapes, we measured the decay of the shear-induced ordering after the cessation of the shear. At large tube sizes and small shear rates, the characteristic times of the decay become longer, but Péclet-weighted times do not scale linearly with Péclet numbers. By modeling particle distributions with the corresponding diffraction patterns and comparing measured shape asymmetry to simulations, we determined the variation of volume fraction over the azimuthal angle for the maximum ordered state in the jet.
RESUMEN
We present a new method to extract the intermediate scattering function from series of coherent diffraction patterns taken with 2D detectors. Our approach is based on analyzing speckle patterns in terms of photon statistics. We show that the information obtained is equivalent to the conventional technique of calculating the intensity autocorrelation function. Our approach represents a route for correlation spectroscopy on ultrafast timescales at X-ray free-electron laser sources.
Asunto(s)
Rayos X , Cinética , Rayos Láser , Distribución Normal , Óptica y Fotónica , Reconocimiento de Normas Patrones Automatizadas , Dispersión de Radiación , Propiedades de Superficie , Sincrotrones , Difracción de Rayos X/métodosRESUMEN
The spontaneous formation and coexistence of crystalline polymorphic trilayer domains in amphiphilic films at air-liquid interfaces is demonstrated by grazing incidence synchrotron x-ray diffraction. These polymorphic crystallites may serve as models for the early stages of crystal nucleation and growth, helping to elucidate the manner in which additives influence the progress of crystal nucleation, growth, and polymorphism and suggesting ways of selectively generating and controlling multilayers on liquid surfaces. Auxiliary molecules have been designed to selectively inhibit development of the polymorphs, leading primarily to a single phase monolayer.
RESUMEN
Crystal structures of seryl-tRNA synthetase from Thermus thermophilus complexed with two different analogs of seryl adenylate have been determined at 2.5 A resolution. The first complex is between the enzyme and seryl-hydroxamate-AMP (adenosine monophosphate), produced enzymatically in the crystal from adenosine triphosphate (ATP) and serine hydroxamate, and the second is with a synthetic analog of seryl adenylate (5'-O-[N-(L-seryl)-sulfamoyl]adenosine), which is a strong inhibitor of the enzyme. Both molecules are bound in a similar fashion by a network of hydrogen bond interactions in a deep hydrophilic cleft formed by the antiparallel beta sheet and surrounding loops of the synthetase catalytic domain. Four regions in the primary sequence are involved in the interactions, including the motif 2 and 3 regions of class 2 synthetases. Apart from the specific recognition of the serine side chain, the interactions are likely to be similar in all class 2 synthetases.
Asunto(s)
Adenosina Monofosfato/análogos & derivados , Adenosina/análogos & derivados , Serina-ARNt Ligasa/química , Serina/análogos & derivados , Thermus thermophilus/enzimología , Adenosina/síntesis química , Adenosina/metabolismo , Adenosina Monofosfato/síntesis química , Adenosina Monofosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Gráficos por Computador , Cristalografía por Rayos X , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Alineación de Secuencia , Serina/síntesis química , Serina/metabolismo , Serina-ARNt Ligasa/metabolismoRESUMEN
We present a sample environment for the investigation of nanoparticle self-assembly from a colloidal solution via controlled solvent evaporation using in situ small-angle X-ray scattering. Nanoparticles form ordered superlattices in the evaporative assembly along the X-ray transparent windows of a three-dimensional sample cell. The special design of the sample cell allows for monitoring the superlattice formation and transformation at different stages of the assembly process during the movement of the evaporation front in real time. The presented sample environment can be used to study the self-organization of a wide range of colloidal particles and other soft materials.
RESUMEN
We present a novel experimental setup for performing a precise pre-alignment of a hard X-ray split-and-delay unit based on low coherence light interferometry and high-precision penta-prisms. A split-and-delay unit is a sophisticated perfect crystal-optics device that splits an incoming X-ray pulse into two sub-pulses and generates a controlled time-delay between them. While the availability of a split-and-delay system will make ultrafast time-correlation and X-ray pump-probe experiments possible at free-electron lasers, its alignment process can be very tedious and time-consuming due to its complex construction. By implementing our experimental setup at beamline P10 of PETRA III, we were able to reduce the time of alignment to less than 3 h. We also propose an alternate method for finding the zero-time delay crossing without the use of X-rays or pulsed laser sources. The successful demonstration of this method brings prospect for operating the split-and-delay systems under alignment-time-critical environments such as X-ray free electron laser facilities.
RESUMEN
One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from very low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.
RESUMEN
A transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g., X-ray magnetic circular dichroism (XMCD) measurements or holographic imaging. Here, we investigate the degree of ellipticity upon transmission of linearly polarized radiation through a cobalt thin film. The experiment was performed at a photon energy resonant to the Co L3-edge, i.e., 778 eV, and the polarization of the transmitted radiation was determined using a polarization analyzer that measures the directional dependence of photo electrons emitted from a gas target. Elliptically polarized radiation can be created at any absorption edge showing the XMCD effect by using the respective magnetic element.