Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Mater Sci Mater Med ; 29(11): 172, 2018 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-30392024

RESUMEN

Pericardial tissue is widely used as a biomaterial, especially for cardiovascular application. Tissue processing plays a key role in developing future scaffolds derived from biological material, yet standardized evaluation is still pending. This study presents a comprehensive assessment of different treatment protocols of bovine pericardium and compares those findings to commercially available decellularized bovine (CAB) and equine (CAE) pericardial patches. Native samples were fixed with glutaraldehyde (GA) or decellularized. These decellularized samples were subsequently either treated with GA (DEC-GA) or sterilized (DEC). Treatment effects were assessed by histological evaluation of structural and biomechanical properties. Furthermore, decellularization efficacy and accuracy of the applied sterilization protocol were evaluated. Cell seeding of processed pericardial samples with human endothelial cells constituted as biocompatibility test.GA-fixed tissue revealed structural deterioration, cytotoxicity and opposed to popular believe, GA-treatment did not lead to sterility of the samples. Biomechanical assessment revealed an increase in tensile strength of GA and a decrease of DEC and DEC-GA. DEC samples were successfully sterilized and showed good decellularization results, with a significant decrease in residual DNA. Comparative assessment revealed overall good results of CAE, yet results of CAB varied largely, e.g. decellularization efficacy or tissue thickness. Biocompatibility of DEC, CAB and CAE was confirmed by successful cell adhesion. Substantial differences of native tissue properties were observed, resulting in varying treatment efficacies. This study provides a first overview describing consequential variations among biomaterials and illustrates the necessity of multidimensional assessment and tissue quality management for biological scaffold development.


Asunto(s)
Bioprótesis , Prótesis Valvulares Cardíacas , Pericardio , Manejo de Especímenes , Animales , Materiales Biocompatibles , Bovinos , Ensayo de Materiales , Ingeniería de Tejidos/métodos , Fijación del Tejido , Andamios del Tejido
2.
Radiologie (Heidelb) ; 62(Suppl 1): 28-33, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36112173

RESUMEN

BACKGROUND: The introduction of 3D printing in the medical field led to new possibilities in the planning of complex procedures, as well as new ways of training junior physicians. Especially in the field of vascular interventions, 3D printing has a wide range of applications. METHODOLOGICAL INNOVATIONS: 3D-printed models of aortic aneurysms can be used for procedural training of endovascular aortic repair (EVAR), which can help boost the physician's confidence in the procedure, leading to a better outcome for the patient. Furthermore, it allows for a better understanding of complex anatomies and pathologies. In addition to teaching applications, the field of pre-interventional planning benefits greatly from the addition of 3D printing. Especially in the preparation for a complex endovascular aortic repair, prior orientation and test implantation of the stent grafts can further improve outcomes and reduce complications. For both teaching and planning applications, high-quality imaging datasets are required that can be transferred into a digital 3D model and subsequently printed in 3D. Thick slice thickness or suboptimal contrast agent phase can reduce the overall detail of the digital model, possibly concealing crucial anatomical details. CONCLUSION: Based on the digital 3D model created for 3D printing, another new visualization technique might see future applications in the field of vascular interventions: virtual reality (VR). It enables the physician to quickly visualize a digital 3D model of the patient's anatomy in order to assess possible complications during endovascular repair. Due to the short transfer time from the radiological dataset into the VR, this technique might see use in emergency situations, where there is no time to wait for a printed model.


Asunto(s)
Procedimientos Endovasculares , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda