Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Curr Issues Mol Biol ; 45(12): 9793-9822, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38132458

RESUMEN

Antimicrobial photodynamic therapy (APDT) has received a great deal of attention due to its unique ability to kill all currently known classes of microorganisms. To date, infectious diseases caused by bacteria and viruses are one of the main sources of high mortality, mass epidemics and global pandemics among humans. Every year, the emergence of three to four previously unknown species of viruses dangerous to humans is recorded, totaling more than 2/3 of all newly discovered human pathogens. The emergence of bacteria with multidrug resistance leads to the rapid obsolescence of antibiotics and the need to create new types of antibiotics. From this point of view, photodynamic inactivation of viruses and bacteria is of particular interest. This review summarizes the most relevant mechanisms of antiviral and antibacterial action of APDT, molecular targets and correlation between the structure of cationic porphyrins and their photodynamic activity.

2.
Int J Mol Sci ; 24(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36613788

RESUMEN

A novel amphiphilic cationic chlorin e6 derivative was investigated as a promising photosensitizer for photodynamic therapy. Two cationic -N(CH3)3+ groups on the periphery of the macrocycle provide additional hydrophilization of the molecule and ensure its electrostatic binding to the mitochondrial membranes and bacterial cell walls. The presence of a hydrophobic phytol residue in the same molecule results in its increased affinity towards the phospholipid membranes while decreasing its stability towards aggregation in aqueous media. In organic media, this chlorin e6 derivative is characterized by a singlet oxygen quantum yield of 55%. Solubilization studies in different polymer- and surfactant-based supramolecular systems revealed the effective stabilization of this compound in a photoactive monomolecular form in micellar nonionic surfactant solutions, including Tween-80 and Cremophor EL. A novel cationic chlorin e6 derivative also demonstrates effective binding towards serum albumin, which enhances its bioavailability and promotes effective accumulation within the target tissues. Laser confocal scanning microscopy demonstrates the rapid intracellular accumulation and distribution of this compound throughout the cells. Together with low dark toxicity and a rather good photostability, this compound demonstrates significant phototoxicity against HeLa cells causing cellular damage most likely through reactive oxygen species generation. These results demonstrate a high potential of this derivative for application in photodynamic therapy.


Asunto(s)
Clorofilidas , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Células HeLa , Fotoquimioterapia/métodos , Porfirinas/farmacología , Porfirinas/química
3.
Nanomaterials (Basel) ; 14(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38921878

RESUMEN

Copolymers based on vinylidene fluoride are potential materials for ferroelectric memory elements. The trend in studies showing that a decrease in the degree of crystallinity can lead to an unexpected increase in the electric breakdown field is noted. An analysis of the literature data reveals that in fluorine-containing ferroelectric polymers, when using a bipolar triangular field, the hysteresis loop has an unclosed shape, with each subsequent loop being accompanied by a decrease in the dielectric response. In this work, the effect of the structure of self-polarized films of copolymers of vinylidene fluoride with tetrafluoroethylene and hexafluoropropylene on breakdown processes was studied. The structure of the polymer films was monitored using infrared spectroscopy (IR) and X-ray diffraction. Kelvin probe force microscopy (KPFM) was applied to characterize the local electrical properties of the polymers. For the films of the first copolymer, which crystallize in the polar ß-phase, asymmetry in the dielectric response was observed at fields greater than the coercive field. For the films of the copolymers of vinylidene fluoride with hexafluoropropylene, which crystallize predominantly in the nonpolar α-phase, polarization switching processes have also been observed, but at lower electric fields. The noted phenomena will help to identify the influence of the structure of ferroelectric polymers on their electrical properties.

4.
Pharmaceutics ; 16(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38258135

RESUMEN

In this study, we described physico-chemical properties of novel nanoformulation of photosensitizer-pyropheophorbide α 17-diethylene glycol ester (XL) (chlorophyll α derivative), revealing insights into antitumor activity and maintaining quality, meeting the pharmaceutical approach of new nanoformulation design. Our formulation, based on poly(lactic-co-glycolic acid) (PLGA) nanoparticles, increased XL solubility and selective tumor-targeted accumulation. In our research, we revealed, for the first time, that XL binding to polyvinyl alcohol (PVA) enhances XL photophysical activity, providing the rationale for PVA application as a stabilizer for nanoformulations. Results of FTIR, DSC, and XRD revealed the physical interactions between XL and excipients, including PVA, indicating that the encapsulation maintained XL binding to PVA. The encapsulated XL exhibited higher photophysical activity compared to non-encapsulated substance, which can be attributed to the influence of residual PVA. Gamma-irradiation led to degradation of XL; however, successful sterilization of the samples was achieved through the filtration. Importantly, the encapsulated and sterilized XL retained cytotoxicity against both 2D and 3D tumor cell models, demonstrating the potential of the formulated NP-XL for photodynamic therapy applications, but lacked the ability to reactivate epigenetically silenced genes. These findings provide valuable insights into the design and characterization of PLGA-based nanoparticles for the encapsulation of photosensitizers.

5.
Pharmaceutics ; 15(1)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36678898

RESUMEN

This paper reports on the design and synthesis of new multifunctional porphyrin-based therapeutic agents for potential therapeutic and diagnostic applications. Zinc complexes of A3B-type meso-arylporphyrins containing OH- and COOH- groups were modified with chelating ligands based on 4'-(4-methylphenyl)-2,2':6',2″-terpyridine derivatives in high yields. Novel complexes with Gd(III), Fe(III) were obtained for these conjugates. Aggregation behaviour in solutions of different solubilisers was studied to inform the selection of the optimal solubilising platform for the porphyrins obtained; their photophysical and photochemical properties were also characterised. Micellar Pluronic F127 formulation was found to be the most effective solubiliser for stabilising the fluorescence-active monomolecular form of the photosensitisers (PS). In vitro cytotoxicity of the compounds was studied on the HEP-2 cell line with and without irradiation for 1.5 and 24 h. As a result, the IC50 of compounds 12 and 14 at an irradiation dose of 8.073 J/cm2 was shown to be 1.87 ± 0.333 and 1.4 ± 0.152 µM, respectively; without irradiation, the compound had no toxic effect within the studied concentration range (1.5 h). A test for the inhibition of metabolic cooperation or promoter activity was also performed for the abovementioned compounds, showing the efficacy and safety of the conjugates obtained. Preliminary data have indicated the high potential of the new type of PS to be promising molecular theranostic agents.

6.
Pharmaceutics ; 15(4)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37111769

RESUMEN

Photodynamic therapy (PDT) in oncology is characterized by low invasiveness, minimal side effects, and little tissue scarring. Increasing the selectivity of PDT agents toward a cellular target is a new approach intended to improve this method. This study is devoted to the design and synthesis of a new conjugate based on meso-arylporphyrin with a low-molecular-weight tyrosine kinase inhibitor, Erlotinib. A nano-formulation based on Pluronic F127 micelles was obtained and characterized. The photophysical and photochemical properties and biological activity of the studied compounds and their nano-formulation were studied. A significant, 20-40-fold difference between the dark and photoinduced activity was achieved for the conjugate nanomicelles. After irradiation, the studied conjugate nanomicelles were 1.8 times more toxic toward the EGFR-overexpressing cell line MDA-MB-231 compared to the conditionally normal NKE cells. The IC50 was 0.073 ± 0.014 µM for the MDA-MB-231 cell line and 0.13 ± 0.018 µM for NKE cells after irradiation for the target conjugate nanomicelles.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda