Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(13): 7263-7270, 2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-32165545

RESUMEN

Spatial heterogeneity in composition and function enables ecosystems to supply diverse services. For soil microbes and the ecosystem functions they catalyze, whether such heterogeneity can be maintained in the face of altered resource inputs is uncertain. In a 50-ha northern California grassland with a mosaic of plant communities generated by different soil types, we tested how spatial variability in microbial composition and function changed in response to nutrient and water addition. Fungal composition lost some of its spatial variability in response to nutrient addition, driven by decreases in mutualistic fungi and increases in antagonistic fungi that were strongest on the least fertile soils, where mutualists were initially most frequent and antagonists initially least frequent. Bacterial and archaeal community composition showed little change in their spatial variability with resource addition. Microbial functions related to nitrogen cycling showed increased spatial variability under nutrient, and sometimes water, additions, driven in part by accelerated nitrification on the initially more-fertile soils. Under anthropogenic changes such as eutrophication and altered rainfall, these findings illustrate the potential for significant changes in ecosystem-level spatial heterogeneity of microbial functions and communities.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Microbiota/fisiología , Microbiología del Suelo , Archaea/fisiología , Bacterias , Demografía/métodos , Ecosistema , Hongos/fisiología , Nitrificación , Nitrógeno/análisis , Lluvia , Suelo , Simbiosis , Agua
2.
Glob Chang Biol ; 25(3): 1152-1170, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30604474

RESUMEN

Interest in land application of organic amendments-such as biosolids, composts, and manures-is growing due to their potential to increase soil carbon and help mitigate climate change, as well as to support soil health and regenerative agriculture. While organic amendments are predominantly applied to croplands, their application is increasingly proposed on relatively arid rangelands that do not typically receive fertilizers or other inputs, creating unique concerns for outcomes such as native plant diversity and water quality. To maximize environmental benefits and minimize potential harms, we must understand how soil, water, and plant communities respond to particular amendments and site conditions. We conducted a global meta-analysis of 92 studies in which organic amendments had been added to arid, semiarid, or Mediterranean rangelands. We found that organic amendments, on average, provide some environmental benefits (increased soil carbon, soil water holding capacity, aboveground net primary productivity, and plant tissue nitrogen; decreased runoff quantity), as well as some environmental harms (increased concentrations of soil lead, runoff nitrate, and runoff phosphorus; increased soil CO2 emissions). Published data were inadequate to fully assess impacts to native plant communities. In our models, adding higher amounts of amendment benefitted four outcomes and harmed two outcomes, whereas adding amendments with higher nitrogen concentrations benefitted two outcomes and harmed four outcomes. This suggests that trade-offs among outcomes are inevitable; however, applying low-N amendments was consistent with both maximizing benefits and minimizing harms. Short study time frames (median 1-2 years), limited geographic scope, and, for some outcomes, few published studies limit longer-term inferences from these models. Nevertheless, they provide a starting point to develop site-specific amendment application strategies aimed toward realizing the potential of this practice to contribute to climate change mitigation while minimizing negative impacts on other environmental goals.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Carbono/análisis , Carbono/metabolismo , Contaminantes Ambientales/análisis , Fertilizantes/análisis , Modelos Teóricos , Nitrógeno/análisis , Nitrógeno/metabolismo , Plantas/metabolismo , Suelo/química , Factores de Tiempo
3.
Proc Natl Acad Sci U S A ; 105(17): 6344-9, 2008 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-18427111

RESUMEN

It has proven difficult, when focused only on biological determinants, to explain why some plant species become naturalized in or invade new locations, whereas others fail. We analyzed the invasion of Trifolium (true clover) species into New Zealand, assessing a range of human, biogeographic, and biological influences at three key invasion stages: introduction, naturalization, and spread. We used sparse principal component analysis (SPCA) to define suites of related attributes and aggregated boosted trees to model relationships with invasion outcomes. Human and biogeographic attributes were strongly associated with success at all stages. Whereas biogeographic attributes, notably large native range, were consistently associated with success, different human factors appeared to favor success at different stages, such as presence in early trade/immigration hotspots (introduction), intentional large-scale planting (naturalization), and frequent presence as a seed contaminant (relative spread rate). Biological traits were less strongly associated with success for introduction and spread and little if at all for naturalization; we found that tall perennials with long flowering periods were more frequently selected for introduction, whereas species with extended flowering in New Zealand spread more rapidly. In addition to causal relationships, the importance of human factors may reflect indirect associations, including ecological traits associated with both human use and invasion. Nevertheless, our results highlight key roles that humans can play in facilitating plant invasion via two pathways: (i) commercial introduction leading to widespread planting and concomitant naturalization and spread and (ii) unintentional introduction and spread of species associated with human activities, such as seed contaminants.


Asunto(s)
Ecosistema , Trifolium/fisiología , Humanos , Modelos Biológicos , Nueva Zelanda , Análisis de Componente Principal
4.
Ecology ; 101(12): e03178, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32870523

RESUMEN

Many global changes take the form of resource enhancements that have potential to transform multiple aspects of ecosystems from slower to faster cycling, including a suite of both above- and belowground variables. We developed a novel analytic approach to measure integrated ecosystem responses to resource-enhancing global changes, and how such whole ecosystem slow-to-fast transitions are linked to diversity and exotic invasions in real-world ecosystems. We asked how 5-yr experimental rainfall and nutrient enhancements in a natural grassland system affected 16 ecosystem functions, pools, and stoichiometry variables considered to indicate slow vs. fast cycling. We combined these metrics into a novel index we termed "slow-fast multifunctionality" and assessed its relationship to plant community diversity and exotic plant dominance. Nutrient and rainfall addition interacted to affect average slow-fast multifunctionality. Nutrient addition alone pushed the system toward faster cycling, but this effect weakened with the joint addition of rainfall and nutrients. Variables associated with soil nutrient pools and cycling most strongly contributed to this antagonistic interaction. Nutrient and water addition together, respectively, had additive or synergistic effects on plant trait composition and productivity, demonstrating divergence of above- and belowground ecosystem responses. Our novel metric of faster cycling was strongly associated with decreased plant species richness and increased exotic species dominance. These results demonstrate the breadth of interacting community and ecosystem changes that ensue when resource limitation is relaxed.


Asunto(s)
Ecosistema , Suelo , Biodiversidad , Plantas , Agua
5.
PLoS One ; 13(2): e0192953, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29447262

RESUMEN

Reducing tillage and growing cover crops, widely recommended practices for boosting soil health, have major impacts on soil communities. Surprisingly little is known about their impacts on soil microbial functional diversity, and especially so in irrigated Mediterranean ecosystems. In long-term experimental plots at the West Side Research and Extension Center in California's Central Valley, we characterized soil microbial communities in the presence or absence of physical disturbance due to tillage, in the presence or absence of cover crops, and at three depths: 0-5, 5-15 and 15-30 cm. This characterization included qPCR for bacterial and archaeal abundances, DNA sequencing of the 16S rRNA gene, and phylogenetic estimation of two ecologically important microbial traits (rRNA gene copy number and genome size). Total (bacterial + archaeal) diversity was higher in no-till than standard till; diversity increased with depth in no-till but decreased with depth in standard till. Total bacterial numbers were higher in cover cropped plots at all depths, while no-till treatments showed higher numbers in 0-5 cm but lower numbers at lower depths compared to standard tillage. Trait estimates suggested that different farming practices and depths favored distinctly different microbial life strategies. Tillage in the absence of cover crops shifted microbial communities towards fast growing competitors, while no-till shifted them toward slow growing stress tolerators. Across all treatment combinations, increasing depth resulted in a shift towards stress tolerators. Cover crops shifted the communities towards ruderals-organisms with wider metabolic capacities and moderate rates of growth. Overall, our results are consistent with decreasing nutrient availability with soil depth and under no-till treatments, bursts of nutrient availability and niche homogenization under standard tillage, and increases in C supply and variety provided by cover crops. Understanding how agricultural practices shift microbial abundance, diversity and life strategies, such as presented here, can assist with designing farming systems that can support high yields, while enhancing C sequestration and increasing resilience to climate change.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/microbiología , Microbiología del Suelo , Archaea/genética , Bacterias/genética , Biodiversidad , Dosificación de Gen , Tamaño del Genoma , Filogenia , ARN de Archaea , ARN Bacteriano , ARN Ribosómico 16S , Secale , Suelo/química , Factores de Tiempo , Triticale , Vicia sativa
6.
Front Microbiol ; 8: 1271, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28744266

RESUMEN

Microbial traits related to ecological responses and functions could provide a common currency facilitating synthesis and prediction; however, such traits are difficult to measure directly for all taxa in environmental samples. Past efforts to estimate trait values based on phylogenetic relationships have not always distinguished between traits with high and low phylogenetic conservatism, limiting reliability, especially in poorly known environments, such as soil. Using updated reference trees and phylogenetic relationships, we estimated two phylogenetically conserved traits hypothesized to be ecologically important from DNA sequences of the 16S rRNA gene from soil bacterial and archaeal communities. We sampled these communities from an environmental change experiment in California grassland applying factorial addition of late-season precipitation and soil nutrients to multiple soil types for 3 years prior to sampling. Estimated traits were rRNA gene copy number, which contributes to how rapidly a microbe can respond to an increase in resources and may be related to its maximum growth rate, and genome size, which suggests the breadth of environmental and substrate conditions in which a microbe can thrive. Nutrient addition increased community-weighted mean estimated rRNA gene copy number and marginally increased estimated genome size, whereas precipitation addition decreased these community means for both estimated traits. The effects of both treatments on both traits were associated with soil properties, such as ammonium, available phosphorus, and pH. Estimated trait responses within several phyla were opposite to the community mean response, indicating that microbial responses, although largely consistent among soil types, were not uniform across the tree of life. Our results show that phylogenetic estimation of microbial traits can provide insight into how microbial ecological strategies interact with environmental changes. The method could easily be applied to any of the thousands of existing 16S rRNA sequence data sets and offers potential to improve our understanding of how microbial communities mediate ecosystem function responses to global changes.

7.
Evolution ; 58(12): 2645-56, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15696744

RESUMEN

On exposure to ultraviolet radiation (UV), many plant species both reduce stem elongation and increase production of phenolic compounds that absorb in the UV region of the spectrum. To demonstrate that such developmental plasticity to UV is adaptive, it is necessary to show that the induced phenotype is both beneficial in inductive environments and maladaptive in non-inductive environments. We measured selection on stem elongation and phenolic content of seedlings of Impatiens capensis transplanted into ambient-UV and UV-removal treatments. We extended the range of phenotypes expressed, and thus the opportunity for selection in each UV treatment, by pretreating seedlings with either a low ratio of red:far-red wavelengths (R:FR), which induced stem elongation and reduced phenolic concentrations, or high R:FR, which had the opposite effect on these two phenotypic traits. Reduced stem length relative to biomass was advantageous for elongated plants under ambient UV, whereas increased elongation was favored in the UV-removal treatment. Selection favored an increase in the level of phenolics induced by UV in the ambient-UV treatment, but a decrease in phenolics in the absence of UV. These results are consistent with the hypotheses that reduced elongation and increased phenolic concentrations serve a UV-protective function and provide the first explicit demonstration in a wild species that plasticity of these traits to UV is adaptive. The observed cost to phenolics in the absence of UV may explain why many species plastically upregulate phenolic production when exposed to UV, rather than evolve constitutively high levels of these compounds. Finally, pretreatment with low R:FR simulating foliar shade did not exacerbate the fitness impact of UV exposure when plants had several weeks to acclimate to UV. This observation suggests that the evolution of adaptive shade avoidance responses to low R:FR in crowded stands will not be constrained by increased sensitivity to UV in elongated plants when they overtop their neighbors.


Asunto(s)
Impatiens/genética , Impatiens/efectos de la radiación , Fenoles/metabolismo , Fenotipo , Tallos de la Planta/efectos de la radiación , Rayos Ultravioleta , Análisis de Varianza , Biomasa , Estimulación Luminosa , Tallos de la Planta/crecimiento & desarrollo , Rhode Island , Selección Genética , Espectrofotometría
8.
Am J Bot ; 90(8): 1159-67, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21659216

RESUMEN

Propagule dispersal biology is a crucial avenue of research for rare plant species, especially those adapted to disturbance, such as northern blazing star (Liatris scariosa var. novae-angliae), a rare, early-successional New England grassland perennial. We examined the dispersal ability of northern blazing star propagules collected from 14 populations covering the entire latitudinal range of the taxon. Multiple regression demonstrated that dispersal ability, as measured by drop time in still air and flight distance in a low-speed wind tunnel, decreased significantly with propagule size and achene length, and increased with achene width and (for flight distance) pappus length. We used this multiple regression model to test for differences in predicted dispersal capability among maternal families, populations, and inland, coastal, and island habitats. Dispersal capability differed significantly among families and populations but not regions, and allometric relationships between morphological measurements were consistent across populations. Overall, dispersal capability was negatively correlated with germination success in a common greenhouse environment. However, germination success for a given dispersal ability, as well as achene shape, differed among populations. These results suggest specific populations to be targeted for management efforts promoting dispersal and establishment.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda