RESUMEN
Slow atoms in Rydberg states can exhibit specular reflection from a cylindrical surface upon which an azimuthally periodic potential is imposed. We have constructed a concave mirror of this type, in the shape of a truncated oblate ellipsoid of revolution, which has a focal length of (1.50±0.01) m measured optically. When placed near the center of a long vacuum pipe, this structure brings a beam of n=32 positronium (Ps) atoms to a focus on a position sensitive detector at a distance of (6.03±0.03) m from the Ps source. The intensity at the focus implies an overall reflection efficiency of â¼30%. The focal spot diameter (32±1) mm full width at half maximum is independent of the atoms' flight times from 20 to 60 µs, thus indicating that the mirror is achromatic to a good approximation. Mirrors based on this principle would be of use in a variety of experiments, allowing for improved collection efficiency and tailored transport or imaging of beams of slow Rydberg atoms and molecules.
RESUMEN
Positron annihilation spectroscopy provides a sensitive means of non-destructive characterization of materials, capable of probing single atom vacancies in solids with 10-7 sensitivity. We detail here the development of a magnetically guided, variable energy, pulsed positron beam designed to conduct depth-dependent defect studies in metals, semiconductors, and dielectrics, which will be the first of its kind in the United States. The design of the target stage provides capabilities for measurements during in situ annealing up to 800 °C and incorporates a new approach to minimize the background due to energetic backscattered positrons. The developed beam at Bowling Green State University provides a powerful tool for characterization of thin films, devices, and ion irradiated materials.
RESUMEN
In this study, we describe an advanced multi-functional, variable-energy positron beam system capable of measuring the energies of multiple "positron-induced" electrons in coincidence with the Doppler-shifted gamma photon resulting from the annihilation of the correlated positron. The measurements were carried out using the unique characteristics of the digital time-of-flight spectrometer and the gamma spectrometer available with the advanced positron beam system. These measurements have resulted in (i) the first digital time-of-flight spectrum of positron annihilation-induced Auger electrons generated using coincident signals from a high-purity Ge detector and a micro-channel plate, (ii) a two-dimensional array of the energy of Doppler-broadened annihilation gamma and the time-of-flight of positron-annihilation induced Auger electrons/secondary electrons measured in coincidence with the annihilation gamma photon, and (iii) the time-of-flight spectra of multiple secondary electrons ejected from a bilayer graphene surface as a result of the impact and/or annihilation of positrons. The novelty of the gamma-electron coincidence spectroscopy has been demonstrated by extracting the Doppler-broadened spectrum of gamma photons emitted due to the annihilation of positrons exclusively with 1s electrons of carbon. The width of the extracted Doppler-broadened gamma spectrum has been found to be consistent with the expected broadening of the annihilation gamma spectrum due to the momentum of the 1s electrons in carbon.
RESUMEN
We have created a high-density gas of interacting positronium (Ps) atoms by irradiating a thin film of nanoporous silica with intense positron bursts and measured the Ps lifetime using a new single-shot technique. When the positrons were compressed to 3.3 x 10(10) cm-2, the apparent intensity of the orthopositronium lifetime component was found to decrease by 33%. We believe this is due to a combination of spin exchange quenching and PS2 molecule formation associated with colliding pairs of oppositely polarized triplet positronium atoms. Our data imply an effective cross section for this process of 2.9 x 10(-14) cm-2.