Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochemistry ; 61(3): 195-205, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35061353

RESUMEN

Queuosine (Q) is a highly modified nucleoside of transfer RNA that is formed from guanosine triphosphate over the course of eight steps. The final step in this process, involving the conversion of epoxyqueuosine (oQ) to Q, is catalyzed by the enzyme QueG. A recent X-ray crystallographic study revealed that QueG possesses the same cofactors as reductive dehalogenases, including a base-off Co(II)cobalamin (Co(II)Cbl) species and two [4Fe-4S] clusters. While the initial step in the catalytic cycle of QueG likely involves the formation of a reduced Co(I)Cbl species, the mechanisms employed by this enzyme to accomplish the thermodynamically challenging reduction of base-off Co(II)Cbl to Co(I)Cbl and to convert oQ to Q remain unknown. In this study, we have used electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) spectroscopies in conjunction with whole-protein quantum mechanics/molecular mechanics (QM/MM) computations to further characterize wild-type QueG and select variants. Our data indicate that the Co(II)Cbl cofactor remains five-coordinate upon substrate binding to QueG. Notably, during a QM/MM optimization of a putative QueG reaction intermediate featuring an alkyl-Co(III) species, the distance between the Co ion and coordinating C atom of oQ increased to >3.3 Å and the C-O bond of the epoxide reformed to regenerate the oQ-bound Co(I)Cbl reactant state of QueG. Thus, our computations indicate that the QueG mechanism likely involves single-electron transfer from the transient Co(I)Cbl species to oQ rather than direct Co-C bond formation, similar to the mechanism that has recently been proposed for the tetrachloroethylene reductive dehalogenase PceA.


Asunto(s)
Nucleósido Q/análogos & derivados , Oxidorreductasas/química , Bacillus subtilis , Catálisis , Dicroismo Circular/métodos , Cobalto/química , Cristalografía por Rayos X/métodos , Teoría Funcional de la Densidad , Espectroscopía de Resonancia por Spin del Electrón/métodos , Modelos Moleculares , Nucleósido Q/química , ARN de Transferencia/química , Vitamina B 12/química
2.
Biochemistry ; 2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34132518

RESUMEN

Organisms that produce reductive dehalogenases utilize halogenated aromatic and aliphatic substances as terminal electron acceptors in a process termed organohalide respiration. These organisms can couple the reduction of halogenated substances with the production of ATP. Tetrachloroethylene reductive dehalogenase (PceA) catalyzes the reductive dehalogenation of per- and trichloroethylenes (PCE and TCE, respectively) to primarily cis-dichloroethylene (DCE). The enzymatic conversion of PCE to TCE (and subsequently DCE) could potentially proceed via a mechanism in which the first step involves a single-electron transfer, nucleophilic addition followed by chloride elimination or protonation, or direct attack at the halogen. Difficulties with producing adequate quantities of PceA have greatly hampered direct experimental studies of the reaction mechanism. To overcome these challenges, we have generated computational models of resting and TCE-bound PceA using quantum mechanics/molecular mechanics (QM/MM) calculations and validated these models on the basis of experimental data. Notably, the norpseudo-cob(II)alamin [Co(II)Cbl*] cofactor remains five-coordinate upon binding of the substrate to the enzyme, retaining a loosely bound water on the lower face. Thus, the mechanism for the thermodynamically challenging Co(II) → Co(I)Cbl* reduction used by PceA differs fundamentally from that utilized by adenosyltransferases, which generate four-coordinate Co(II)Cbl species to facilitate access to the Co(I) oxidation state. The same QM/MM computational methodology was then applied to viable reaction intermediates in the catalytic cycle of PceA. The intermediate predicted to possess the lowest energy is that resulting from electron transfer from Co(I)Cbl* to the substrate to yield Co(II)Cbl*, a chloride ion, and a vinylic radical.

3.
Biochemistry ; 59(10): 1124-1136, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32125848

RESUMEN

ATP:Co(I)rrinoid adenosyltransferases (ACATs) catalyze the transfer of the adenosyl moiety from co-substrate ATP to a corrinoid substrate. ACATs are grouped into three families, namely, CobA, PduO, and EutT. The EutT family of enzymes is further divided into two classes, depending on whether they require a divalent metal ion for activity (class I and class II). To date, a structure has not been elucidated for either class of the EutT family of ACATs. In this work, results of bioinformatics analyses revealed several conserved residues between the C-terminus of EutT homologues and the structurally characterized Lactobacillus reuteri PduO (LrPduO) homologue. In LrPduO, these residues are associated with ATP binding and formation of an intersubunit salt bridge. These residues were substituted, and in vivo and in vitro data support the conclusion that the equivalent residues in the metal-free (i.e., class II) Listeria monocytogenes EutT (LmEutT) enzyme affect ATP binding. Results of in vivo and in vitro analyses of LmEutT variants with substitutions at phenylalanine and tryptophan residues revealed that replacement of the phenylalanine residue at position 72 affected access to the substrate-binding site and replacement of a tryptophan residue at position 238 affected binding of the Cbl substrate to the active site. Unlike the PduO family of ACATs, a single phenylalanine residue is not responsible for displacement of the α-ligand. Together, these data suggest that while EutT enzymes share a conserved ATP-binding motif and an intersubunit salt bridge with PduO family ACATs, class II EutT family ACATs utilize an unidentified mechanism for Cbl lower-ligand displacement and reduction that is different from that of PduO and CobA family ACATs.


Asunto(s)
Corrinoides/metabolismo , Listeria monocytogenes/enzimología , Aciltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/ultraestructura , Transferasas Alquil y Aril/metabolismo , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Dominio Catalítico , Cobalto/química , Cobamidas/metabolismo , Cinética , Limosilactobacillus reuteri/metabolismo , Listeria monocytogenes/genética , Listeria monocytogenes/metabolismo , Modelos Moleculares , Mutación , Transferasas/metabolismo
4.
Inorg Chem ; 59(21): 16065-16072, 2020 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074687

RESUMEN

CblC is a chaperone that catalyzes removal of the ß-axial ligand of cobalamin (or B12), generating cob(II)alamin in an early step in the cofactor trafficking pathway. Cob(II)alamin is subsequently partitioned to support cellular needs for the synthesis of active cobalamin cofactor derivatives. In addition to the ß-ligand transferase activity, the Caenorhabdiitis elegans CblC (ceCblC) and clinical R161G/Q variants of the human protein exhibit robust thiol oxidase activity, converting glutathione to glutathione disulfide while concomitantly reducing O2 to H2O2. The chemical efficiency of the thiol oxidase side reaction during ceCblC-catalyzed dealkylation of alkylcobalamins is noteworthy in that it effectively scrubs ambient oxygen from the reaction mixture, leading to air stabilization of the highly reactive cob(I)alamin product. In this study, we report that the enhanced thiol oxidase activity of ceCblC requires the presence of KCl, which explains how the wasteful thiol oxidase activity is potentially curtailed inside cells where the chloride concentration is low. We have captured an unusual chlorocob(II)alamin intermediate that is formed in the presence of potassium chloride, a common component of the reaction buffer, and have characterized it by electron paramagnetic resonance, magnetic circular dichroism, and computational analyses. The ability to form a chlorocob(II)alamin intermediate could represent an evolutionary vestige in ceCblC, which is structurally related to bacterial B12-dependent reductive dehalogenases that have been proposed to form halogen cob(II)alamin intermediates in their catalytic cycle.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Glutatión Transferasa/metabolismo , Oxidorreductasas/metabolismo , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Vitamina B 12/biosíntesis , Biocatálisis , Proteínas de Caenorhabditis elegans/química , Glutatión Transferasa/química , Modelos Moleculares , Proteínas Proto-Oncogénicas c-cbl/química , Vitamina B 12/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda