Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nucleic Acids Res ; 40(22): e170, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22904085

RESUMEN

Disrupting the interaction between primase and helicase in Escherichia coli increases Okazaki fragment (OF) length due to less frequent primer synthesis. We exploited this feature to increase the amount of ssDNA at the lagging strand of the replication fork that is available for λ Red-mediated Multiplex Automatable Genome Engineering (MAGE). Supporting this concept, we demonstrate that MAGE enhancements correlate with OF length. Compared with a standard recombineering strain (EcNR2), the strain with the longest OFs displays on average 62% more alleles converted per clone, 239% more clones with 5 or more allele conversions and 38% fewer clones with 0 allele conversions in 1 cycle of co-selection MAGE (CoS-MAGE) with 10 synthetic oligonucleotides. Additionally, we demonstrate that both synthetic oligonucleotides and accessible ssDNA targets on the lagging strand of the replication fork are limiting factors for MAGE. Given this new insight, we generated a strain with reduced oligonucleotide degradation and increased genomic ssDNA availability, which displayed 111% more alleles converted per clone, 527% more clones with 5 or more allele conversions and 71% fewer clones with 0 allele conversions in 1 cycle of 10-plex CoS-MAGE. These improvements will facilitate ambitious genome engineering projects by minimizing dependence on time-consuming clonal isolation and screening.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Ingeniería Genética/métodos , Complejos Multienzimáticos/metabolismo , Alelos , Bacteriófago lambda/enzimología , ADN/metabolismo , ADN Primasa/metabolismo , ADN de Cadena Simple/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Genoma , Oligonucleótidos/metabolismo , Recombinasas , Recombinación Genética
2.
Science ; 342(6156): 361-3, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24136967

RESUMEN

Engineering radically altered genetic codes will allow for genomically recoded organisms that have expanded chemical capabilities and are isolated from nature. We have previously reassigned the translation function of the UAG stop codon; however, reassigning sense codons poses a greater challenge because such codons are more prevalent, and their usage regulates gene expression in ways that are difficult to predict. To assess the feasibility of radically altering the genetic code, we selected a panel of 42 highly expressed essential genes for modification. Across 80 Escherichia coli strains, we removed all instances of 13 rare codons from these genes and attempted to shuffle all remaining codons. Our results suggest that the genome-wide removal of 13 codons is feasible; however, several genome design constraints were apparent, underscoring the importance of a strategy that rapidly prototypes and tests many designs in small pieces.


Asunto(s)
Codón/genética , Escherichia coli/genética , Genes Esenciales , Genoma Bacteriano/genética , Aminoácidos/genética , Secuencia de Bases , Escherichia coli/crecimiento & desarrollo , Mutación del Sistema de Lectura , Genes Sintéticos , Ingeniería Genética , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda