Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Connect Tissue Res ; 60(6): 530-543, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31007094

RESUMEN

Background: Orthopedic injuries often occur at the interface between soft tissues and bone. The tendon-bone junction (TBJ) is a classic example of such an interface. Current clinical strategies for TBJ injuries prioritize mechanical reattachment over regeneration of the native interface, resulting in poor outcomes. The need to promote regenerative healing of spatially-graded tissues inspires our effort to develop new tissue engineering technologies that replicate features of the spatially-graded extracellular matrix and strain profiles across the native TBJ. Materials and Methods: We recently described a biphasic collagen-glycosaminoglycan (CG) scaffold containing distinct compartment with divergent mineral content and structural alignment (isotropic vs. anisotropic) linked by a continuous interface zone to mimic structural and compositional features of the native TBJ. Results: Here, we report application of cyclic tensile strain (CTS) to the scaffold via a bioreactor leads to non-uniform strain profiles across the spatially-graded scaffold. Further, combinations of CTS and matrix structural features promote rapid, spatially-distinct differentiation profiles of human bone marrow-derived mesenchymal stem cells (MSCs) down multiple osteotendinous lineages. CTS preferentially upregulates MSC activity and tenogenic differentiation in the anisotropic region of the scaffold. This work demonstrates a tissue engineering approach that couples instructive biomaterials with cyclic tensile stimuli to promote regenerative healing of orthopedic interfaces.


Asunto(s)
Huesos , Diferenciación Celular , Colágeno/química , Glicosaminoglicanos/química , Células Madre Mesenquimatosas , Tendones , Andamios del Tejido/química , Huesos/lesiones , Huesos/metabolismo , Huesos/patología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/patología , Traumatismos de los Tendones/metabolismo , Traumatismos de los Tendones/patología , Traumatismos de los Tendones/terapia , Tendones/metabolismo , Tendones/patología
2.
Acta Biomater ; 76: 116-125, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29944975

RESUMEN

The development of biomaterials for a range of tissue engineering applications increasingly requires control over the bioavailability of biomolecular cues such as growth factors in order to promote desired cell responses. While efforts have predominantly concentrated on covalently-bound or freely-diffusible incorporation of biomolecules in porous, three-dimensional biomaterials, opportunities exist to exploit transient interactions to concentrate growth factor activity over desired time frames. Here, we report the incorporation of ß-cyclodextrin into a model collagen-GAG scaffold as a means to exploit the passive sequestration and release of growth factors via guest-host interactions to control mesenchymal stem cell differentiation. Collagen-GAG scaffolds that incorporate ß-cyclodextrin show improved sequestration as well as extended retention and release of TGF-ß1. We further show extended retention and release of TGF-ß1 and BMP-2 from ß-cyclodextrin modified scaffolds was sufficient to influence the metabolic activity and proliferation of mesenchymal stem cells as well as differential activation of Smad 2/3 and Smad 1/5/8 pathways associated with differential osteo-chondral differentiation. Further, gene expression analysis showed TGF-ß1 release from ß-cyclodextrin CG scaffolds promoted early chondrogenic-specific differentiation. Ultimately, this work establishes a novel method for the incorporation and display of growth factors within CG scaffolds via supramolecular interactions. Such a design framework offers opportunities to selectively alter the bioavailability of multiple biomolecules within a three-dimensional collagen-GAG scaffold to enhance cell activity for a range of musculoskeletal regenerative medicine applications. STATEMENT OF SIGNIFICANCE: We describe the incorporation of ß-cyclodextrin into a model CG-scaffold under development for musculoskeletal tissue engineering applications. We show ß-cyclodextrin modified scaffolds promote the sequestration of soluble TGF-ß1 and BMP-2 via guest-host interactions, leading to extended retention and release. Further, ß-cyclodextrin modified CG scaffolds promote TGF-ß1 or BMP-2 specific Smad signaling pathway activation associated with divergent osseous versus chondrogenic differentiation pathways in mesenchymal stem cells.


Asunto(s)
Proteína Morfogenética Ósea 2 , Diferenciación Celular/efectos de los fármacos , Colágeno/química , Células Madre Mesenquimatosas/metabolismo , Andamios del Tejido/química , Factor de Crecimiento Transformador beta1 , beta-Ciclodextrinas/química , Antígenos de Diferenciación/biosíntesis , Proteína Morfogenética Ósea 2/química , Proteína Morfogenética Ósea 2/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/farmacología , Células Madre Mesenquimatosas/citología , Factor de Crecimiento Transformador beta1/química , Factor de Crecimiento Transformador beta1/farmacología
3.
J Mech Behav Biomed Mater ; 65: 295-305, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27614271

RESUMEN

Orthopedic injuries, particularly those involving tendons and ligaments, are some of the most commonly treated musculoskeletal ailments, but are associated with high costs and poor outcomes. A significant barrier in the design of biomaterials for tendon tissue engineering is the rapid de-differentiation observed for primary tenocytes once removed from the tendon body. Herein, we evaluate the use of an anisotropic collagen-glycosaminoglycan (CG) scaffold as a tendon regeneration platform. We report the effects of structural properties of the scaffold (pore size, collagen fiber crosslinking density) on resultant tenocyte bioactivity, viability, and gene expression. In doing so we address a standing hypothesis that scaffold anisotropy and strut flexural rigidity (stiffness) co-regulate long-term maintenance of a tenocyte phenotype. We report changes in equine tenocyte specific gene expression profiles and bioactivity across a homologous series of anisotropic collagen scaffolds with defined changes in pore size and crosslinking density. Anisotropic scaffolds with higher crosslinking densities and smaller pore sizes were more able to resist cell-mediated contraction forces, promote increased tenocyte metabolic activity, and maintain and increase expression of tenogenic gene expression profiles. These results suggest that control over scaffold strut flexural rigidity via crosslinking and porosity provides an ideal framework to resolve structure-function maps relating the influence of scaffold anisotropy, stiffness, and nutrient biotransport on tenocyte-mediated scaffold remodeling and long-term phenotype maintenance.


Asunto(s)
Colágeno/análisis , Glicosaminoglicanos/análisis , Tenocitos/citología , Andamios del Tejido , Transcriptoma , Animales , Caballos , Ingeniería de Tejidos
4.
Adv Healthc Mater ; 4(6): 831-7, 2015 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-25597299

RESUMEN

A fully 3D biomaterial containing overlapping gradations of structural, compositional, and biomolecular cues as seen in native orthopedic interfaces is described for the first time. A multi-compartment collagen scaffold is created for engineering tendon-bone junctions connected by a continuous interface that can induce spatially specific MSC differentiation down tenogenic and osteogenic lineages without the use of differentiation media.


Asunto(s)
Huesos/fisiología , Colágeno/química , Tendones/fisiología , Ingeniería de Tejidos , Andamios del Tejido , Humanos
5.
Adv Healthc Mater ; 4(1): 58-64, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24989480

RESUMEN

Arrays of 3D macroporous collagen scaffolds with orthogonal gradations of structural and biomolecular cues are described. Gradient maker technology is applied to create linear biomolecular gradients within microstructurally distinct sections of a single CG scaffold array. The array set up is used to explore cell behaviors including proliferation and regulation of stem cell fate.


Asunto(s)
Colágeno/química , Fibroblastos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Técnicas Analíticas Microfluídicas , Análisis de Matrices Tisulares , Animales , Línea Celular , Fibroblastos/citología , Humanos , Células Madre Mesenquimatosas/citología , Ratones , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Análisis de Matrices Tisulares/instrumentación , Análisis de Matrices Tisulares/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda