Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-37600475

RESUMEN

We propose a variational multiscale method stabilization of a linear finite element method for nonlinear poroelasticity. Our approach is suitable for the implicit time integration of poroelastic formulations in which the solid skeleton is anisotropic and incompressible. A detailed numerical methodology is presented for a monolithic formulation that includes both structural dynamics and Darcy flow. Our implementation of this methodology is verified using several hyperelastic and poroelastic benchmark cases, and excellent agreement is obtained with the literature. Grid convergence studies for both anisotropic hyperelastodynamics and poroelastodynamics demonstrate that the method is second-order accurate. The capabilities of our approach are demonstrated using a model of the left ventricle (LV) of the heart derived from human imaging data. Simulations using this model indicate that the anisotropicity of the myocardium has a substantial influence on the pore pressure. Furthermore, the temporal variations of the various components of the pore pressure (hydrostatic pressure and pressure resulting from changes in the volume of the pore fluid) are correlated with the variation of the added mass and dynamics of the LV, with maximum pore pressure being obtained at peak systole. The order of magnitude and the temporal variation of the pore pressure are in good agreement with the literature.

2.
J Clin Apher ; 36(1): 6-11, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33030779

RESUMEN

Vascular access connection configurations during tandem extracorporeal membrane oxygenation (ECMO) and therapeutic plasma exchange (TPE) may impact exchange kinetics. In these tandem procedures, typically the TPE inlet line is proximal to the TPE return line with respect to blood flow in the ECMO device, maximizing the opportunity for replacement fluid homogenization within the ECMO circuit. However, if TPE inlet and return line connections are switched, recirculation-a phenomenon in which replacement fluid leaving the TPE return line is prematurely drawn into the TPE inlet line prior to satisfactory homogenization within the ECMO circuit-will occur. Such recirculation could diminish TPE efficacy in patients on ECMO and mitigate therapeutic benefits. Using a mathematical model of recirculation in tandem ECMO and TPE, we demonstrate that the predicted impact of recirculation is negligible and vascular access connection positioning does not appear to be a point of clinical concern with regard to TPE kinetics.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Intercambio Plasmático , Humanos , Cinética , Modelos Teóricos
3.
Analyst ; 145(4): 1258-1278, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-31984999

RESUMEN

Rotating disc electrode (RDE) voltammetry has been widely adopted for the study of heterogenized molecular electrocatalysts for multi-step fuel-forming reactions but this tool has never been comprehensively applied to their homogeneous analogues. Here, the utility and limitations of RDE techniques for mechanistic and kinetic analysis of homogeneous molecular catalysts that mediate multi-electron, multi-substrate redox transformations are explored. Using the ECEC' reaction mechanism as a case study, two theoretical models are derived based on the Nernst diffusion layer model and the Hale transformation. Current-potential curves generated by these computational strategies are compared under a variety of limiting conditions to identify conditions under which the more minimalist Nernst Diffusion Layer approach can be applied. Based on this theoretical treatment, strategies for extracting kinetic information from the plateau current and the foot of the catalytic wave are derived. RDEV is applied to a cobaloxime hydrogen evolution reaction (HER) catalyst under non-aqueous conditions in order to experimentally validate this theoretical framework and explore the feasibility of RDE as a tool for studying homogeneous catalysts. Crucially, analysis of the foot-of-the-wave via this theoretical framework provides rate constants for elementary reaction steps that agree with those extracted from stationary voltammetric methods, supporting the application of RDE to study homogeneous fuel-forming catalysts. Finally, obstacles encountered during the kinetic analysis of cobaloxime, along with the voltammetric signatures used to diagnose this reactivity, are discussed with the goal of guiding groups working to improve RDE set-ups and help researchers avoid misinterpretation of RDE data.

4.
Artículo en Inglés | MEDLINE | ID: mdl-32483394

RESUMEN

The immersed boundary method is a mathematical framework for modeling fluid-structure interaction. This formulation describes the momentum, viscosity, and incompressibility of the fluid-structure system in Eulerian form, and it uses Lagrangian coordinates to describe the structural deformations, stresses, and resultant forces. Integral transforms with Dirac delta function kernels connect the Eulerian and Lagrangian frames. The fluid and the structure are both typically treated as incompressible materials. Upon discretization, however, the incompressibility of the structure is only maintained approximately. To obtain an immersed method for incompressible hyperelastic structures that is robust under large structural deformations, we introduce a volumetric energy in the solid region that stabilizes the formulation and improves the accuracy of the numerical scheme. This formulation augments the discrete Lagrange multiplier for the incompressibility constraint, thereby improving the original method's accuracy. This volumetric energy is incorporated by decomposing the strain energy into isochoric and dilatational components, as in standard solid mechanics formulations of nearly incompressible elasticity. We study the performance of the stabilized method using several quasi-static solid mechanics benchmarks, a dynamic fluid-structure interaction benchmark, and a detailed three-dimensional model of esophageal transport. The accuracy achieved by the stabilized immersed formulation is comparable to that of a stabilized finite element method for incompressible elasticity using similar numbers of structural degrees of freedom.

5.
Chaos ; 27(9): 093926, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28964127

RESUMEN

In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.


Asunto(s)
Fenómenos Electrofisiológicos , Corazón/fisiología , Modelos Cardiovasculares , Potenciales de Acción , Anisotropía , Electrodos , Atrios Cardíacos , Sistema de Conducción Cardíaco/fisiología , Humanos , Análisis Numérico Asistido por Computador , Factores de Tiempo
6.
J Exp Biol ; 219(Pt 23): 3759-3772, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27903629

RESUMEN

The smallest flying insects commonly possess wings with long bristles. Little quantitative information is available on the morphology of these bristles, and their functional importance remains a mystery. In this study, we (1) collected morphological data on the bristles of 23 species of Mymaridae by analyzing high-resolution photographs and (2) used the immersed boundary method to determine via numerical simulation whether bristled wings reduced the force required to fling the wings apart while still maintaining lift. The effects of Reynolds number, angle of attack, bristle spacing and wing-wing interactions were investigated. In the morphological study, we found that as the body length of Mymaridae decreases, the diameter and gap between bristles decreases and the percentage of the wing area covered by bristles increases. In the numerical study, we found that a bristled wing experiences less force than a solid wing. The decrease in force with increasing gap to diameter ratio is greater at higher angles of attack than at lower angles of attack, suggesting that bristled wings may act more like solid wings at lower angles of attack than they do at higher angles of attack. In wing-wing interactions, bristled wings significantly decrease the drag required to fling two wings apart compared with solid wings, especially at lower Reynolds numbers. These results support the idea that bristles may offer an aerodynamic benefit during clap and fling in tiny insects.


Asunto(s)
Fenómenos Biomecánicos/fisiología , Vuelo Animal/fisiología , Himenópteros/anatomía & histología , Himenópteros/fisiología , Alas de Animales/anatomía & histología , Animales , Hidrodinámica , Modelos Biológicos
7.
PLoS Comput Biol ; 9(6): e1003097, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785272

RESUMEN

A fundamental issue in locomotion is to understand how muscle forcing produces apparently complex deformation kinematics leading to movement of animals like undulatory swimmers. The question of whether complicated muscle forcing is required to create the observed deformation kinematics is central to the understanding of how animals control movement. In this work, a forced damped oscillation framework is applied to a chain-link model for undulatory swimming to understand how forcing leads to deformation and movement. A unified understanding of swimming, caused by muscle contractions ("active" swimming) or by forces imparted by the surrounding fluid ("passive" swimming), is obtained. We show that the forcing triggers the first few deformation modes of the body, which in turn cause the translational motion. We show that relatively simple forcing patterns can trigger seemingly complex deformation kinematics that lead to movement. For given muscle activation, the forcing frequency relative to the natural frequency of the damped oscillator is important for the emergent deformation characteristics of the body. The proposed approach also leads to a qualitative understanding of optimal deformation kinematics for fast swimming. These results, based on a chain-link model of swimming, are confirmed by fully resolved computational fluid dynamics (CFD) simulations. Prior results from the literature on the optimal value of stiffness for maximum speed are explained.


Asunto(s)
Natación/fisiología , Animales , Modelos Biológicos , Contracción Muscular
8.
J Chem Phys ; 140(13): 134110, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24712783

RESUMEN

We develop a Fluctuating Immersed Boundary (FIB) method for performing Brownian dynamics simulations of confined particle suspensions. Unlike traditional methods which employ analytical Green's functions for Stokes flow in the confined geometry, the FIB method uses a fluctuating finite-volume Stokes solver to generate the action of the response functions "on the fly." Importantly, we demonstrate that both the deterministic terms necessary to capture the hydrodynamic interactions among the suspended particles, as well as the stochastic terms necessary to generate the hydrodynamically correlated Brownian motion, can be generated by solving the steady Stokes equations numerically only once per time step. This is accomplished by including a stochastic contribution to the stress tensor in the fluid equations consistent with fluctuating hydrodynamics. We develop novel temporal integrators that account for the multiplicative nature of the noise in the equations of Brownian dynamics and the strong dependence of the mobility on the configuration for confined systems. Notably, we propose a random finite difference approach to approximating the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. Through comparisons with analytical and existing computational results, we numerically demonstrate the ability of the FIB method to accurately capture both the static (equilibrium) and dynamic properties of interacting particles in flow.


Asunto(s)
Modelos Químicos , Movimiento (Física) , Algoritmos , Simulación por Computador , Hidrodinámica , Procesos Estocásticos , Suspensiones/química
9.
J Comput Phys ; 5062024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38737497

RESUMEN

We present and analyze a series of benchmark tests regarding the application of the immersed boundary (IB) method to viscoelastic flows through and around non-trivial, stationary geometries. The IB method is widely used to simulate biological fluid dynamics and other modeling scenarios in which a structure is immersed in a fluid. Although the IB method has been most commonly used to model systems involving viscous incompressible fluids, it also can be applied to visoelastic fluids, and has enabled the study of a wide variety of dynamical problems including the settling of vesicles and the swimming of elastic filaments in fluids modeled by the Oldroyd-B constitutive equation. In the viscoelastic context, however, relatively little work has explored the accuracy or convergence properties of this numerical scheme. Herein, we present benchmarking results for an IB solver applied to viscoelastic flows in and around non-trivial geometries using either the idealized Oldroyd-B constitutive model or the more physcially realistic, polymer-entanglementbased Rolie-Poly constitutive equations. We use two-dimensional numerical test cases along with results from rheology experiments to benchmark the IB method and compare it to more complex finite element and finite volume viscoelastic flow solvers. Additionally, we analyze different choices of regularized delta function and relative Lagrangian grid spacings which allow us to identify and recommend the key choices of these numerical parameters depending on the present flow regime.

10.
PNAS Nexus ; 3(10): pgae392, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39434870

RESUMEN

Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid-structure interactions (FSIs). However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the valves are limited in their abilities to predict valve performance, capture fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac FSI in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart's microstructure. Further, it is the first FSI model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure-volume loops that automatically capture isovolumetric contraction and relaxation, and that its responses to changes in loading conditions are consistent with the Frank-Starling mechanism. These complex relationships emerge intrinsically from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical interventions. They also can provide platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients.

11.
J Chem Phys ; 139(21): 214112, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24320369

RESUMEN

We develop an immersed boundary approach to modeling reaction-diffusion processes in dispersions of reactive spherical particles, from the diffusion-limited to the reaction-limited setting. We represent each reactive particle with a minimally-resolved "blob" using many fewer degrees of freedom per particle than standard discretization approaches. More complicated or more highly resolved particle shapes can be built out of a collection of reactive blobs. We demonstrate numerically that the blob model can provide an accurate representation at low to moderate packing densities of the reactive particles, at a cost not much larger than solving a Poisson equation in the same domain. Unlike multipole expansion methods, our method does not require analytically computed Green's functions, but rather, computes regularized discrete Green's functions on the fly by using a standard grid-based discretization of the Poisson equation. This allows for great flexibility in implementing different boundary conditions, coupling to fluid flow or thermal transport, and the inclusion of other effects such as temporal evolution and even nonlinearities. We develop multigrid-based preconditioners for solving the linear systems that arise when using implicit temporal discretizations or studying steady states. In the diffusion-limited case the resulting linear system is a saddle-point problem, the efficient solution of which remains a challenge for suspensions of many particles. We validate our method by comparing to published results on reaction-diffusion in ordered and disordered suspensions of reactive spheres.


Asunto(s)
Difusión , Algoritmos , Simulación por Computador , Modelos Químicos
12.
Proc Natl Acad Sci U S A ; 107(33): 14603-8, 2010 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-20671202

RESUMEN

We present a multiscale model and an adaptive numerical scheme for simulating cardiac action potential propagation along a linear strand of heart muscle cells. This model couples macroscale partial differential equations posed over the tissue to microscale equations posed over discrete cellular geometry. The microscopic equations are used only near action potential wave fronts, and the macroscopic equations are used everywhere else. We study the effects of gap-junctional and ephaptic coupling on conduction in the multiscale model and its fully macroscale and fully microscale analogues. Our simulations reveal that the adaptive multiscale model accurately reproduces the action potential wave forms and wave speeds of the fully microscale model. They also demonstrate that, at low gap-junctional conductivities, the accuracy of fully macroscale simulations is sensitive to numerical grid spacing. Moreover, adaptive multiscale simulations capture the effect of ephaptic coupling, whereas fully macroscale simulations do not. We propose two ways of generalizing our multiscale model to higher dimensions, and we argue that such generalizations may be necessary to obtain accurate three-dimensional simulations of cardiac conduction in certain pathophysiological parameter regimes.


Asunto(s)
Algoritmos , Sistema de Conducción Cardíaco/fisiología , Modelos Cardiovasculares , Miocitos Cardíacos/fisiología , Potenciales de Acción/fisiología , Animales , Simulación por Computador , Uniones Comunicantes/fisiología , Humanos
13.
J Comput Phys ; 4772023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37007629

RESUMEN

The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. The IFED method uses a finite element (FE) method to approximate the stresses, forces, and structural deformations on a structural mesh and a finite difference (FD) method to approximate the momentum and enforce incompressibility of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. With an FE structural mechanics framework, force spreading first requires that the force itself be projected onto the finite element space. Similarly, velocity interpolation requires projecting velocity data onto the FE basis functions. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. This paper provides both numerical and computational analyses of the effects of this replacement for evaluating the force projection and for the IFED coupling operators. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the IFED coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve.

14.
Ann Biomed Eng ; 51(1): 189-199, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36209266

RESUMEN

This paper presents a semi-automatic method for the construction of volumetric models of the aortic valve using computed tomography angiography images. Although the aortic valve typically cannot be segmented directly from a computed tomography angiography image, the method described herein uses manually selected samples of an aortic segmentation derived from this image to inform the construction. These samples capture certain physiologic landmarks and are used to construct a volumetric valve model. As a demonstration of the capabilities of this method, valve models for 25 pediatric patients are created. A selected valve anatomy is used to perform fluid-structure interaction simulations using the immersed finite element/difference method with physiologic driving and loading conditions. Simulation results demonstrate this method creates a functional valve that opens and closes normally and generates pressure and flow waveforms that are similar to those observed clinically.


Asunto(s)
Válvula Aórtica , Modelos Cardiovasculares , Humanos , Niño , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/fisiología , Simulación por Computador , Tomografía Computarizada por Rayos X , Angiografía por Tomografía Computarizada
15.
Int J Numer Method Biomed Eng ; 39(5): e3700, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37016277

RESUMEN

Subclinical leaflet thrombosis (SLT) is a potentially serious complication of aortic valve replacement with a bioprosthetic valve in which blood clots form on the replacement valve. SLT is associated with increased risk of transient ischemic attacks and strokes and can progress to clinical leaflet thrombosis. SLT following aortic valve replacement also may be related to subsequent structural valve deterioration, which can impair the durability of the valve replacement. Because of the difficulty in clinical imaging of SLT, models are needed to determine the mechanisms of SLT and could eventually predict which patients will develop SLT. To this end, we develop methods to simulate leaflet thrombosis that combine fluid-structure interaction and a simplified thrombosis model that allows for deposition along the moving leaflets. Additionally, this model can be adapted to model deposition or absorption along other moving boundaries. We present convergence results and quantify the model's ability to realize changes in valve opening and pressures. These new approaches are an important advancement in our tools for modeling thrombosis because they incorporate both adhesion to the surface of the moving leaflets and feedback to the fluid-structure interaction.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Válvula Aórtica/cirugía , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Trombosis/cirugía , Estenosis de la Válvula Aórtica/etiología , Prótesis Valvulares Cardíacas/efectos adversos
16.
J Comput Phys ; 4882023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37214277

RESUMEN

This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prior work on integrating partitioned and immersed approaches to rigid-body FSI. Our numerical approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. As in earlier work, we use approximate Lagrange multiplier forces to treat the kinematic interface conditions along the fluid-structure interface. This penalty approach simplifies the linear solvers needed by our formulation by introducing two representations of the fluid-structure interface, one that moves with the fluid and another that moves with the structure, that are connected by stiff springs. This approach also enables the use of multi-rate time stepping, which allows us to use different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress jump conditions along complex interfaces while enabling the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures with a constant total volume, and it can handle fully compressible solid structures for cases in which at least part of the solid boundary does not contact the incompressible fluid. Selected grid convergence studies demonstrate second-order convergence in volume conservation and in the pointwise discrepancies between corresponding positions of the two interface representations as well as between first and second-order convergence in the structural displacements. The time stepping scheme is also demonstrated to yield second-order convergence. To assess and validate the robustness and accuracy of the new algorithm, comparisons are made with computational and experimental FSI benchmarks. Test cases include both smooth and sharp geometries in various flow conditions. We also demonstrate the capabilities of this methodology by applying it to model the transport and capture of a geometrically realistic, deformable blood clot in an inferior vena cava filter.

17.
Ann Biomed Eng ; 51(1): 103-116, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36264408

RESUMEN

Transcatheter aortic valve replacement (TAVR) first received FDA approval for high-risk surgical patients in 2011 and has been approved for low-risk surgical patients since 2019. It is now the most common type of aortic valve replacement, and its use continues to accelerate. Computer modeling and simulation (CM&S) is a tool to aid in TAVR device design, regulatory approval, and indication in patient-specific care. This study introduces a computational fluid-structure interaction (FSI) model of TAVR with Medtronic's CoreValve Evolut R device using the immersed finite element-difference (IFED) method. We perform dynamic simulations of crimping and deployment of the Evolut R, as well as device behavior across the cardiac cycle in a patient-specific aortic root anatomy reconstructed from computed tomography (CT) image data. These IFED simulations, which incorporate biomechanics models fit to experimental tensile test data, automatically capture the contact within the device and between the self-expanding stent and native anatomy. Further, we apply realistic driving and loading conditions based on clinical measurements of human ventricular and aortic pressures and flow rates to demonstrate that our Evolut R model supports a physiological diastolic pressure load and provides informative clinical performance predictions.


Asunto(s)
Estenosis de la Válvula Aórtica , Prótesis Valvulares Cardíacas , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Análisis de Elementos Finitos , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Diseño de Prótesis , Resultado del Tratamiento
18.
ArXiv ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37461423

RESUMEN

Cardiac fluid dynamics fundamentally involves interactions between complex blood flows and the structural deformations of the muscular heart walls and the thin, flexible valve leaflets. There has been longstanding scientific, engineering, and medical interest in creating mathematical models of the heart that capture, explain, and predict these fluid-structure interactions. However, existing computational models that account for interactions among the blood, the actively contracting myocardium, and the cardiac valves are limited in their abilities to predict valve performance, resolve fine-scale flow features, or use realistic descriptions of tissue biomechanics. Here we introduce and benchmark a comprehensive mathematical model of cardiac fluid dynamics in the human heart. A unique feature of our model is that it incorporates biomechanically detailed descriptions of all major cardiac structures that are calibrated using tensile tests of human tissue specimens to reflect the heart's microstructure. Further, it is the first fluid-structure interaction model of the heart that provides anatomically and physiologically detailed representations of all four cardiac valves. We demonstrate that this integrative model generates physiologic dynamics, including realistic pressure-volume loops that automatically capture isovolumetric contraction and relaxation, and predicts fine-scale flow features. None of these outputs are prescribed; instead, they emerge from interactions within our comprehensive description of cardiac physiology. Such models can serve as tools for predicting the impacts of medical devices or clinical interventions. They also can serve as platforms for mechanistic studies of cardiac pathophysiology and dysfunction, including congenital defects, cardiomyopathies, and heart failure, that are difficult or impossible to perform in patients.

19.
J Comput Phys ; 4492022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34898720

RESUMEN

We present a new discretization approach to advection-diffusion problems with Robin boundary conditions on complex, time-dependent domains. The method is based on second order cut cell finite volume methods introduced by Bochkov et al. [8] to discretize the Laplace operator and Robin boundary condition. To overcome the small cell problem, we use a splitting scheme along with a semi-Lagrangian method to treat advection. We demonstrate second order accuracy in the L 1, L 2, and L ∞ norms for both analytic test problems and numerical convergence studies. We also demonstrate the ability of the scheme to convert one chemical species to another across a moving boundary.

20.
J Comput Phys ; 4572022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35300097

RESUMEN

The immersed boundary (IB) method is a non-body conforming approach to fluid-structure interaction (FSI) that uses an Eulerian description of the momentum, viscosity, and incompressibility of a coupled fluid-structure system and a Lagrangian description of the deformations, stresses, and resultant forces of the immersed structure. Integral transforms with Dirac delta function kernels couple the Eulerian and Lagrangian variables, and in practice, discretizations of these integral transforms use regularized delta function kernels. Many different kernel functions have been proposed, but prior numerical work investigating the impact of the choice of kernel function on the accuracy of the methodology has often been limited to simplified test cases or Stokes flow conditions that may not reflect the method's performance in applications, particularly at intermediate-to-high Reynolds numbers, or under different loading conditions. This work systematically studies the effect of the choice of regularized delta function in several fluid-structure interaction benchmark tests using the immersed finite element/difference (IFED) method, which is an extension of the IB method that uses a finite element structural discretization combined with a Cartesian grid finite difference method for the incompressible Navier-Stokes equations. Whereas the conventional IB method spreads forces from the nodes of the structural mesh and interpolates velocities to those nodes, the IFED formulation evaluates the regularized delta function on a collection of interaction points that can be chosen to be denser than the nodes of the Lagrangian mesh. This opens the possibility of using structural discretizations with wide node spacings that would produce gaps in the Eulerian force in nodally coupled schemes (e.g., if the node spacing is comparable to or broader than the support of the regularized delta functions). Earlier work with this methodology suggested that such coarse structural meshes can yield improved accuracy for shear-dominated cases and, further, found that accuracy improves when the structural mesh spacing is increased. However, these results were limited to simple test cases that did not include substantial pressure loading on the structure. This study investigates the effect of varying the relative mesh widths of the Lagrangian and Eulerian discretizations in a broader range of tests. Our results indicate that kernels satisfying a commonly imposed even-odd condition require higher resolution to achieve similar accuracy as kernels that do not satisfy this condition. We also find that narrower kernels are more robust, in the sense that they yield results that are less sensitive to relative changes in the Eulerian and Lagrangian mesh spacings, and that structural meshes that are substantially coarser than the Cartesian grid can yield high accuracy for shear-dominated cases but not for cases with large normal forces. We verify our results in a large-scale FSI model of a bovine pericardial bioprosthetic heart valve in a pulse duplicator.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda