RESUMEN
Integrated circuits (ICs) and central processing units (CPUs), essential components of electrical and electronic equipment (EEE), are complex composite materials rich in recyclable high-value strategic and critical metals, with many in concentrations higher than in their natural ores. With gold the most valuable metal present, increase in demand for gold for EEE and its limited availability have led to a steep rise in the market price of gold, making gold recycling a high priority to meet demand. To overcome the limitations associated with conventional technologies for recycling e-waste, the use of greener technologies (ionic liquids (ILs) as leaching agents), offers greater potential for the recovery of gold from e-waste components. While previous studies have demonstrated the efficiency and feasibility of using ILs for gold recovery, these works predominantly concentrate on the extraction stage and often utilise simulated solutions, lacking the implementation of a complete process validated with real samples to effectively assess its overall effectiveness. In this work, a simulated Model Test System was used to determine the optimal leaching and extraction conditions before application to real samples. With copper being the most abundant metal in the e-waste fractions, to access the gold necessitated a two-stage pre-treatment (nitric acid leaching followed by aqua regia leaching) to ensure complete removal of copper and deliver a gold-enriched leach liquor. Gold extraction from the leach liquor was achieved by liquid-liquid extraction using Cyphos 101 (0.1 M in toluene with an O:A = 1:1, 20 °C, 150 rpm, and 15 min) and as a second process by sorption extraction with loaded resins (Amberlite XAD-7 with 300 mg of Cyphos 101/g of resins at 20 °C, 150 rpm and 3 h). In both processes, complete stripping and desorption of gold was achieved (0.5 M thiourea in 0.5 M HCl) and gold recovered, as nanoparticles of purity ≥95%, via a reduction step using a sodium borohydride solution (0.1 M NaBH4 in 0.1 M NaOH). These two hydrometallurgical processes developed can achieve overall efficiencies of ≥95% for gold recovery from real e-waste components, permit the reuse of the IL and resins up to five consecutive times, and offer a promising approach for recovery from any e-waste stream rich in gold.
Asunto(s)
Oro , Líquidos Iónicos , Reciclaje , Líquidos Iónicos/química , Oro/química , Reciclaje/métodos , Residuos ElectrónicosRESUMEN
Revised legislation and bans on imports of waste electrical and electronic equipment (WEEE) into many Asian countries for treatment are driving the need for more efficient WEEE fractionation in Europe by expanding the capacity of treatment plants and improving the percentage recovery of materials of economic value. Data from a key stakeholder survey and consultation are combined with the results of a detailed literature survey to provide weighted matrix input into multi-criteria decision analysis calculations to carry out the following tasks: (a) assess the relative importance of 12 process options against the 6 industry-derived in-process economic potential criteria, that is, increase in product quality, increase in recycling rate, increase in process capacity, decrease in labour costs, decrease in energy costs and decrease in disposal costs; and (b) rank 25 key technologies that have been selected as being the most likely to benefit the efficient sorting of WEEE. The results indicate that the first stage in the development of any total system to achieve maximum economic recovery of materials from WEEE has to be the selection and application of appropriate fractionation process technologies to concentrate valuable components such as critical metals into the smallest possible fractions to achieve their recovery while minimising the disposal costs of low-value products. The stakeholder-based study has determined the priority for viable technical process developments for efficient WEEE fractionation and highlighted the economic and technical improvements that have to be made in the treatment of WEEE.
Asunto(s)
Residuos Electrónicos , Administración de Residuos , Electricidad , Residuos Electrónicos/análisis , Electrónica , Metales , ReciclajeRESUMEN
The fine dust of incinerator bottom ash generated from dry discharge systems can be transformed into an inert material suitable for the production of hard, dense ceramics. Processing involves the addition of glass, ball milling and calcining to remove volatile components from the incinerator bottom ash. This transforms the major crystalline phases present in fine incinerator bottom ash dust from quartz (SiO(2)), calcite (CaCO(3)), gehlenite (Ca(2)Al(2)SiO(7)) and hematite (Fe(2)O(3)), to the pyroxene group minerals diopside (CaMgSi(2)O(6)), clinoenstatite (MgSi(2)O(6)), wollastonite (CaSiO(3)) together with some albite (NaAlSi(3)O(8)) and andradite (Ca(3)Fe(2)Si(3)O(12)). Processed powders show minimal leaching and can be pressed and sintered to form dense (>2.5 g cm(-3)), hard ceramics that exhibit low firing shrinkage (<7%) and zero water absorption. The research demonstrates the potential to beneficially up-cycle the fine incinerator bottom ash dust from dry discharge technology into a raw material suitable for the production of ceramic tiles that have potential for use in a range of industrial applications.
Asunto(s)
Cerámica/análisis , Ceniza del Carbón/química , Polvo/análisis , Residuos Sólidos/análisis , IncineraciónRESUMEN
Recent exponential growth in the throughput of next-generation DNA sequencing platforms has dramatically spurred the use of accessible and scalable targeted resequencing approaches. This includes candidate region diagnostic resequencing and novel variant validation from whole genome or exome sequencing analysis. We have previously demonstrated that selective genomic circularization is a robust in-solution approach for capturing and resequencing thousands of target human genome loci such as exons and regulatory sequences. To facilitate the design and production of customized capture assays for any given region in the human genome, we developed the Human OligoGenome Resource (http://oligogenome.stanford.edu/). This online database contains over 21 million capture oligonucleotide sequences. It enables one to create customized and highly multiplexed resequencing assays of target regions across the human genome and is not restricted to coding regions. In total, this resource provides 92.1% in silico coverage of the human genome. The online server allows researchers to download a complete repository of oligonucleotide probes and design customized capture assays to target multiple regions throughout the human genome. The website has query tools for selecting and evaluating capture oligonucleotides from specified genomic regions.
Asunto(s)
Bases de Datos de Ácidos Nucleicos , Genoma Humano , Sondas de Oligonucleótidos/química , Análisis de Secuencia de ADN , Mapeo Cromosómico , Humanos , Anotación de Secuencia Molecular , Sondas de Oligonucleótidos/normasRESUMEN
Mismanaged municipal solid waste (MSW), the major source of plastics pollution and a key contributor to climate forcing, in Global South cities poses public health and environmental problems. This study analyses the first consistent and quality assured dataset available for cities distributed worldwide, featuring a comprehensive set of solid waste management performance indicators (Wasteaware Cities Benchmark Indicators - WABI). Machine learning (multivariate random forest) and univariate non-linear regression are applied, identifying best-fit converging models for a broad range of explanatory socioeconomic variables. These proxies describe in a variety of ways generic levels of progress, such as Gross Domestic Product - Purchasing Power per capita, Social Progress Index (SPI) and Corruption Perceptions Index. Specifically, the research tests and quantitatively confirms a long-standing, yet unverified, hypothesis: that variability in cities' performance on MSW can be accounted for by socioeconomic development indices. The results provide a baseline for measuring progress as cities report MSW performance for the sustainable development goal SDG11.6.1 indicator: median rates of controlled recovery and disposal are approximately at 45 % for cities in low-income countries, 75 % in lower-middle, and 100 % for both upper-middle and high-income. Casting light on aspects beyond the SDG metric, on the quality of MSW-related services, show that improvements in service quality often lag improvements in service coverage. Overall, the findings suggest that progress in collection coverage, and controlled recovery and disposal has already taken place in low- and middle-income cities. However, if cities aspire to perform better on MSW management than would have been anticipated by the average socioeconomic development in their country, they should identify ways to overcome systemic underlying failures associated with that socioeconomic level. Most alarmingly, 'business as usual' development would substantially increase their waste generation per capita unless new policies are found to promote decoupling.
RESUMEN
A comparison of the implementation of extended producer responsibility (EPR) to packaging waste and waste electrical and electronic equipment (WEEE) is presented for a representative sample of eleven European Union countries based on five indicators: stakeholders and responsibilities; compliance mechanisms; role of local authorities; financing mechanisms and merits and limitations, with four countries selected for more detailed case study analysis. Similarities, trends and differences in national systems are highlighted with particular focus on the role of local authorities and their relationship with obligated producers and the effect on the operation and success of each system. The national systems vary considerably in design, in terms of influence of pre-existing policy and systems, methods of achieving producer compliance (multiple or single collective schemes), fee structures, targets, waste stream prioritization and local authority involvement. Differing approaches are evident across all member states with respect to the role played by local authorities, responsibility apportioned to them, and the evolution of working relationships between obligated producers and municipalities. On the whole, EPR for packaging and WEEE has been successfully implemented throughout Europe in terms of Directive targets. It is, however, clear that the EPR systems currently in application across Europe differ primarily due to contrasting opinion on the legitimacy of local authorities as stakeholders and, in some cases, a fear on the part of industry of associated costs. Where local authorities have been engaged in the design and implementation of national systems, existing infrastructure used and defined roles established for producers and local authorities, results have been significantly more positive than in the cases where local authorities have had limited engagement.
Asunto(s)
Equipos y Suministros Eléctricos , Residuos Industriales/legislación & jurisprudencia , Administración de Residuos/legislación & jurisprudencia , Ciudades , Política Ambiental/economía , Unión Europea , Regulación Gubernamental , Artículos Domésticos , Embalaje de Productos/legislación & jurisprudencia , Administración de Residuos/economíaRESUMEN
Several cell populations have been reported to possess intestinal stem cell (ISC) activity during homeostasis and injury-induced regeneration. Here, we explored inter-relationships between putative mouse ISC populations by comparative RNA-sequencing (RNA-seq). The transcriptomes of multiple cycling ISC populations closely resembled Lgr5+ ISCs, the most well-defined ISC pool, but Bmi1-GFP+ cells were distinct and enriched for enteroendocrine (EE) markers, including Prox1. Prox1-GFP+ cells exhibited sustained clonogenic growth in vitro, and lineage-tracing of Prox1+ cells revealed long-lived clones during homeostasis and after radiation-induced injury in vivo. Single-cell mRNA-seq revealed two subsets of Prox1-GFP+ cells, one of which resembled mature EE cells while the other displayed low-level EE gene expression but co-expressed tuft cell markers, Lgr5 and Ascl2, reminiscent of label-retaining secretory progenitors. Our data suggest that the EE lineage, including mature EE cells, comprises a reservoir of homeostatic and injury-inducible ISCs, extending our understanding of cellular plasticity and stemness.
Asunto(s)
Antígenos de Diferenciación/metabolismo , Células Enteroendocrinas/metabolismo , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Yeyuno/lesiones , Yeyuno/metabolismo , Células Madre/metabolismo , Animales , Antígenos de Diferenciación/genética , Células Enteroendocrinas/patología , Regulación de la Expresión Génica , Mucosa Intestinal/patología , Yeyuno/patología , Ratones , Ratones Transgénicos , Células Madre/patologíaRESUMEN
Using a bench-scale rig, the activities of Pt, Pd and Pt+Pd catalysts supported on gamma-Al(2)O(3) and on TiO(2) (anatase) for the complete oxidation of methane (300 ppmv) in air have been measured as a function of temperature; values of T(10), T(50) and T(90) together with the Arrhenius parameters (activation energy and pre-exponential factor) are reported. Pt is less active than Pd when deposited on the surface of the TiO(2), but more active when deposited on gamma-Al(2)O(3), however when combined, the Pt+Pd mixture is more active than either metal individually. The T(10) for Pt+Pd/gamma-Al(2)O(3) was being as low as 228 degrees C. The significance of the Arrhenius parameters, for metal containing catalysts is that they exhibit compensation with increasing activation energy, while securing a more rapid increase in conversion from 0% to 100% when the temperature is increased.
Asunto(s)
Metano/química , Paladio/química , Platino (Metal)/química , Óxido de Aluminio/química , Catálisis , Cinética , Metano/aislamiento & purificación , Oxidación-Reducción , Temperatura , Termodinámica , Titanio/químicaRESUMEN
The use of waste materials for ecological benefit, agricultural improvement or as part of construction works are often exempt from waste management control in order to maximize the reuse of material that would otherwise be disposed of to landfill. It is important, however, to determine whether there is potential for such waste to cause environmental harm in the context of the basis for granting exemptions under the relevant framework objective to ensure that waste is recovered or disposed of without risk to water, air, soil, plants or animals. The potential for environmental harm was investigated by leaching studies on two wastes commonly found at exempt sites: bituminous road planings and waste soils. For bituminous road planings, the organic components of the waste were identified by their solubility in organic solvents but these components would have low environmental impact in terms of bioavailability. Leaching studies of the heavy metals copper, lead and zinc, into the environment, under specific conditions and particularly those modelling acid rain and landfill leachate conditions showed that, except for copper, the amounts leached fell within Waste Acceptance Criteria compliance limits for defining waste as inert waste. The fact that the amount of copper leached was greater than the Waste Acceptance Criteria level suggests that either additional testing of wastes regarded as exempt should be carried out to ensure that they are in analytical compliance or that legislation should allow for the potential benefits of reuse to supersede deviations from analytical compliance.