Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 179(7): 1525-1536.e12, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835031

RESUMEN

Poxviruses use virus-encoded multisubunit RNA polymerases (vRNAPs) and RNA-processing factors to generate m7G-capped mRNAs in the host cytoplasm. In the accompanying paper, we report structures of core and complete vRNAP complexes of the prototypic Vaccinia poxvirus (Grimm et al., 2019; in this issue of Cell). Here, we present the cryo-electron microscopy (cryo-EM) structures of Vaccinia vRNAP in the form of a transcribing elongation complex and in the form of a co-transcriptional capping complex that contains the viral capping enzyme (CE). The trifunctional CE forms two mobile modules that bind the polymerase surface around the RNA exit tunnel. RNA extends from the vRNAP active site through this tunnel and into the active site of the CE triphosphatase. Structural comparisons suggest that growing RNA triggers large-scale rearrangements on the surface of the transcription machinery during the transition from transcription initiation to RNA capping and elongation. Our structures unravel the basis for synthesis and co-transcriptional modification of poxvirus RNA.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Metiltransferasas/química , Complejos Multienzimáticos/química , Nucleotidiltransferasas/química , Monoéster Fosfórico Hidrolasas/química , Virus Vaccinia/ultraestructura , Proteínas Virales/química , Microscopía por Crioelectrón , Complejos Multienzimáticos/ultraestructura , ARN Mensajero/química , Imagen Individual de Molécula , Transcripción Genética , Virus Vaccinia/genética , Virus Vaccinia/metabolismo
2.
Cell ; 179(7): 1537-1550.e19, 2019 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-31835032

RESUMEN

Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm. We report cryo-EM structures of core and complete vRNAP enzymes from Vaccinia virus at 2.8 Å resolution. The vRNAP core enzyme resembles eukaryotic RNA polymerase II (Pol II) but also reveals many virus-specific features, including the transcription factor Rap94. The complete enzyme additionally contains the transcription factor VETF, the mRNA processing factors VTF/CE and NPH-I, the viral core protein E11, and host tRNAGln. This complex can carry out the entire early transcription cycle. The structures show that Rap94 partially resembles the Pol II initiation factor TFIIB, that the vRNAP subunit Rpo30 resembles the Pol II elongation factor TFIIS, and that NPH-I resembles chromatin remodeling enzymes. Together with the accompanying paper (Hillen et al., 2019), these results provide the basis for unraveling the mechanisms of poxvirus transcription and RNA processing.


Asunto(s)
ARN Polimerasas Dirigidas por ADN/química , Factores de Transcripción/química , Virus Vaccinia/ultraestructura , Proteínas Virales/química , Microscopía por Crioelectrón , Complejos Multienzimáticos/química , Complejos Multienzimáticos/ultraestructura , Imagen Individual de Molécula , Virus Vaccinia/genética , Virus Vaccinia/metabolismo
3.
Trends Biochem Sci ; 47(10): 892-902, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35581053

RESUMEN

In eukaryotic cells, the process of gene expression is confined to the nucleus and enabled by multisubunit RNA polymerases (RNAPs). Many viruses make use of the host cellular gene expression apparatus during infection, and hence transfer their genome at least transiently to the host nucleus. However, poxviruses have evolved a different strategy to propagate. Their double-stranded DNA genome is transcribed in the host cytoplasm by a virus-encoded RNAP (vRNAP), which is evolutionarily related to eukaryotic RNA polymerase II. In this Review, we highlight recent high-resolution structures of the poxviral transcription apparatus in different phases of action. These structures, along with biochemical data, now allow the definition of a comprehensive model of poxviral gene expression and its regulation.


Asunto(s)
Poxviridae , Núcleo Celular/genética , Citoplasma/genética , ARN Polimerasas Dirigidas por ADN/química , Expresión Génica , Poxviridae/genética , ARN Polimerasa II/genética , Transcripción Genética
4.
PLoS Pathog ; 20(5): e1011652, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768256

RESUMEN

The year 2022 was marked by the mpox outbreak caused by the human monkeypox virus (MPXV), which is approximately 98% identical to the vaccinia virus (VACV) at the sequence level with regard to the proteins involved in DNA replication. We present the production in the baculovirus-insect cell system of the VACV DNA polymerase holoenzyme, which consists of the E9 polymerase in combination with its co-factor, the A20-D4 heterodimer. This led to the 3.8 Å cryo-electron microscopy (cryo-EM) structure of the DNA-free form of the holoenzyme. The model of the holoenzyme was constructed from high-resolution structures of the components of the complex and the A20 structure predicted by AlphaFold 2. The structures do not change in the context of the holoenzyme compared to the previously determined crystal and NMR structures, but the E9 thumb domain became disordered. The E9-A20-D4 structure shows the same compact arrangement with D4 folded back on E9 as observed for the recently solved MPXV holoenzyme structures in the presence and the absence of bound DNA. A conserved interface between E9 and D4 is formed by a cluster of hydrophobic residues. Small-angle X-ray scattering data show that other, more open conformations of E9-A20-D4 without the E9-D4 contact exist in solution using the flexibility of two hinge regions in A20. Biolayer interferometry (BLI) showed that the E9-D4 interaction is indeed weak and transient in the absence of DNA although it is very important, as it has not been possible to obtain viable viruses carrying mutations of key residues within the E9-D4 interface.


Asunto(s)
Microscopía por Crioelectrón , ADN Polimerasa Dirigida por ADN , Virus Vaccinia , Virus Vaccinia/enzimología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/química , Holoenzimas/química , Holoenzimas/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/química , Proteínas Virales/genética , Animales , Humanos , Modelos Moleculares , Conformación Proteica , Cristalografía por Rayos X
5.
Hum Mol Genet ; 30(24): 2488-2502, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34302176

RESUMEN

A deficiency in Survival Motor Neuron (SMN) protein results in motor neuron loss in spinal muscular atrophy (SMA) patients. Human SMN is encoded by SMN1 and SMN2 that differ by a single C6T transition in a splice regulatory region of exon 7. In SMN2, exon 7 is skipped leading to an unstable protein, which cannot compensate for SMN1 loss in SMA patients. The disease severity of human SMA (Types 1-4) depends on the levels of SMN protein, with intermediate levels leading to delayed disease onset and extended life expectancy in Type 2 patients. We used homology directed repair (HDR) to generate a zebrafish mutant with intermediate Smn levels, to mimic intermediate, hSMN2 dependent forms of SMA. In the obtained smnA6Tind27 mutant zebrafish, Smn protein formed oligomers but protein levels dropped significantly at juvenile stages. Motor neurons and neuromuscular junctions (NMJ) also formed normally initially but motor neuron loss and locomotor deficiencies became evident at 21 days. Subsequent muscle wasting and early adult lethality also phenocopied intermediate forms of human SMA. Together, our findings are consistent with the interpretation that Smn is required for neuromuscular maintenance, and establish the smnA6Tind27 zebrafish mutant as a novel model for intermediate types of SMA. As this mutant allows studying the effect of late Smn loss on motor neurons, neuromuscular junctions, and muscle at advanced stages of the disease, it will be a valuable resource for testing new drugs targeted towards treating intermediate forms of SMA.


Asunto(s)
Atrofia Muscular Espinal , Pez Cebra , Animales , Modelos Animales de Enfermedad , Exones/genética , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Unión Neuromuscular/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Pez Cebra/genética
6.
Nucleic Acids Res ; 49(13): 7207-7223, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33754639

RESUMEN

The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.


Asunto(s)
Proteínas del Complejo SMN/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Atrofia Muscular Espinal/genética , Mutación , Proteínas Nucleares/química , Unión Proteica , Proteínas del Complejo SMN/metabolismo , Dispersión del Ángulo Pequeño , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología Estructural de Proteína , Difracción de Rayos X
7.
Trends Biochem Sci ; 48(3): 199-202, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36804037
8.
Cochrane Database Syst Rev ; 6: CD015077, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35767435

RESUMEN

BACKGROUND: Acute respiratory distress syndrome (ARDS) represents the most severe course of COVID-19 (caused by the SARS-CoV-2 virus), usually resulting in a prolonged stay in an intensive care unit (ICU) and high mortality rates. Despite the fact that most affected individuals need invasive mechanical ventilation (IMV), evidence on specific ventilation strategies for ARDS caused by COVID-19 is scarce. Spontaneous breathing during IMV is part of a therapeutic concept comprising light levels of sedation and the avoidance of neuromuscular blocking agents (NMBA). This approach is potentially associated with both advantages (e.g. a preserved diaphragmatic motility and an optimised ventilation-perfusion ratio of the ventilated lung), as well as risks (e.g. a higher rate of ventilator-induced lung injury or a worsening of pulmonary oedema due to increases in transpulmonary pressure). As a consequence, spontaneous breathing in people with COVID-19-ARDS who are receiving IMV is subject to an ongoing debate amongst intensivists. OBJECTIVES: To assess the benefits and harms of early spontaneous breathing activity in invasively ventilated people with COVID-19 with ARDS compared to ventilation strategies that avoid spontaneous breathing. SEARCH METHODS: We searched the Cochrane COVID-19 Study Register (which includes CENTRAL, PubMed, Embase, Clinical Trials.gov WHO ICTRP, and medRxiv) and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies from their inception to 2 March 2022. SELECTION CRITERIA: Eligible study designs comprised randomised controlled trials (RCTs) that evaluated spontaneous breathing in participants with COVID-19-related ARDS compared to ventilation strategies that avoided spontaneous breathing (e.g. using NMBA or deep sedation levels). Additionally, we considered controlled before-after studies, interrupted time series with comparison group, prospective cohort studies and retrospective cohort studies. For these non-RCT studies, we considered a minimum total number of 50 participants to be compared as necessary for inclusion. Prioritised outcomes were all-cause mortality, clinical improvement or worsening, quality of life, rate of (serious) adverse events and rate of pneumothorax. Additional outcomes were need for tracheostomy, duration of ICU length of stay and duration of hospitalisation. DATA COLLECTION AND ANALYSIS: We followed the methods outlined in the Cochrane Handbook for Systematic Reviews of Interventions. Two review authors independently screened all studies at the title/abstract and full-text screening stage. We also planned to conduct data extraction and risk of bias assessment in duplicate. We planned to conduct meta-analysis for each prioritised outcome, as well as subgroup analyses of mortality regarding severity of oxygenation impairment and duration of ARDS. In addition, we planned to perform sensitivity analyses for studies at high risk of bias, studies using NMBA in addition to deep sedation level to avoid spontaneous breathing and a comparison of preprints versus peer-reviewed articles. We planned to assess the certainty of evidence using the GRADE approach. MAIN RESULTS: We identified no eligible studies for this review. AUTHORS' CONCLUSIONS: We found no direct evidence on whether early spontaneous breathing in SARS-CoV-2-induced ARDS is beneficial or detrimental to this particular group of patients.  RCTs comparing early spontaneous breathing with ventilatory strategies not allowing for spontaneous breathing in SARS-CoV-2-induced ARDS are necessary to determine its value within the treatment of severely ill people with COVID-19. Additionally, studies should aim to clarify whether treatment effects differ between people with SARS-CoV-2-induced ARDS and people with non-SARS-CoV-2-induced ARDS.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , COVID-19/complicaciones , Humanos , Bloqueantes Neuromusculares , Respiración Artificial , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Revisiones Sistemáticas como Asunto
9.
PLoS Genet ; 15(10): e1008460, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31671093

RESUMEN

Malfunction of pre-mRNA processing factors are linked to several human diseases including cancer and neurodegeneration. Here we report the identification of a de novo heterozygous missense mutation in the SNRPE gene (c.65T>C (p.Phe22Ser)) in a patient with non-syndromal primary (congenital) microcephaly and intellectual disability. SNRPE encodes SmE, a basal component of pre-mRNA processing U snRNPs. We show that the microcephaly-linked SmE variant is unable to interact with the SMN complex and as a consequence fails to assemble into U snRNPs. This results in widespread mRNA splicing alterations in fibroblast cells derived from this patient. Similar alterations were observed in HEK293 cells upon SmE depletion that could be rescued by the expression of wild type but not mutant SmE. Importantly, the depletion of SmE in zebrafish causes aberrant mRNA splicing alterations and reduced brain size, reminiscent of the patient microcephaly phenotype. We identify the EMX2 mRNA, which encodes a protein required for proper brain development, as a major mis-spliced down stream target. Together, our study links defects in the SNRPE gene to microcephaly and suggests that alterations of cellular splicing of specific mRNAs such as EMX2 results in the neurological phenotype of the disease.


Asunto(s)
Empalme Alternativo , Proteínas de Homeodominio/genética , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación Missense , Factores de Transcripción/genética , Proteínas Nucleares snRNP/genética , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Linaje , Empalme del ARN , ARN Mensajero/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Secuenciación del Exoma , Pez Cebra , Proteínas Nucleares snRNP/química , Proteínas Nucleares snRNP/metabolismo
10.
Anaesthesist ; 71(4): 281-290, 2022 04.
Artículo en Alemán | MEDLINE | ID: mdl-34546394

RESUMEN

BACKGROUND: In the context of COVID-19, the German CEOsys project (COVID-19 Evidenz Ökosystem, www.covid-evidenz.de ) identifies, evaluates and summarizes the results of scientific studies to obtain evidence on this disease. The evidence syntheses are used to derive specific recommendations for clinical practice and to contribute to national guidelines. Besides the necessity of conducting good quality evidence syntheses during a pandemic, just as important is that the dissemination of evidence needs to be quick and efficient, especially in a health crisis. The CEOsys project has set itself this challenge. OBJECTIVE: Preparing the most suitable distribution of evidence syntheses as part of the CEOsys project tasks. METHODS: Intensive care unit (ICU) personnel in Germany were surveyed via categorical and free text questions. The survey focused on the following topics: evidence syntheses, channels and strategies of distribution, possibility of feedback, structure and barriers of dissemination and trustworthiness of various organizations. Profession, qualification, setting and size of the facility were recorded. Questionnaires were pretested throughout the queried professions (physician, nurse, others). The survey was anonymously carried out online through SosciSurvey® and an e­mail was sent directly to 940 addresses. The survey was launched on 3 December, a reminder was sent after 14 days and it ended on 31 December. The survey was also announced via e­mail through DIVI. RESULTS: Of 317 respondents 200 completed the questionnaire. All information was analyzed including the responses from incomplete questionnaires. The most stated barriers were lack of time and access. Especially residents and nurses without specialization in intensive care mentioned uncertainty or insufficient experience in dealing with evidence syntheses as a barrier. Active distribution of evidence syntheses was clearly preferred. More than half of the participants chose websites of public institutions, medical journals, professional societies and e­mail newsletters for drawing attention to new evidence syntheses. Short versions, algorithms and webinars were the most preferred strategies for dissemination. Trust in organizations supplying information on the COVID-19 pandemic was given to professional societies and the Robert Koch Institute (RKI) as the German governmental institute for infections and public health. The respondents' prioritized topics are long-term consequences of the disease, protection of medical personnel against infection and possibilities of ventilation treatment. CONCLUSION: Even though universally valid, evidence syntheses should be actively brought to the target audience, especially during a health crisis such as the COVID-19 pandemic with its exceptional challenges including lack of time and uncertainties in patient care. The contents should be clear, short (short versions, algorithms) and with free access. E­mail newsletters, websites or medical journals should continuously report on new evidence syntheses. Professional societies and the governmental institute for infections and public health should be involved in dissemination due to their obvious trustworthiness.


Asunto(s)
COVID-19 , Pandemias , Cuidados Críticos , Alemania/epidemiología , Humanos , Pandemias/prevención & control , Encuestas y Cuestionarios
11.
Mol Cell ; 49(4): 692-703, 2013 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-23333303

RESUMEN

Small nuclear ribonucleoproteins (snRNPs) represent key constituents of major and minor spliceosomes. snRNPs contain a common core, composed of seven Sm proteins bound to snRNA, which forms in a step-wise and factor-mediated reaction. The assembly chaperone pICln initially mediates the formation of an otherwise unstable pentameric Sm protein unit. This so-called 6S complex docks subsequently onto the SMN complex, which removes pICln and enables the transfer of pre-assembled Sm proteins onto snRNA. X-ray crystallography and electron microscopy was used to investigate the structural basis of snRNP assembly. The 6S complex structure identifies pICln as an Sm protein mimic, which enables the topological organization of the Sm pentamer in a closed ring. A second structure of 6S bound to the SMN complex components SMN and Gemin2 uncovers a plausible mechanism of pICln elimination and Sm protein activation for snRNA binding. Our studies reveal how assembly factors facilitate formation of RNA-protein complexes in vivo.


Asunto(s)
Proteínas de Drosophila/química , Canales Iónicos/química , Proteínas Nucleares snRNP/química , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Drosophila melanogaster , Humanos , Enlace de Hidrógeno , Ratones , Microscopía Electrónica , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Xenopus/química , Xenopus laevis , Proteínas Nucleares snRNP/ultraestructura
12.
Hum Mol Genet ; 25(21): 4717­4725, 2016 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-27577872

RESUMEN

A recent publication by Seng et al. in this journal reports the crystallographic structure of refolded, full-length SMN protein and two disease-relevant derivatives thereof. Here, we would like to suggest that at least two of the structures reported in that study are incorrect. We present evidence that one of the associated crystallographic datasets is derived from a crystal of the bacterial Sm-like protein Hfq and that a second dataset is derived from a crystal of the bacterial Gab protein. Both proteins are frequent contaminants of bacterially overexpressed proteins which might have been co-purified during metal affinity chromatography. A third structure presented in the Seng et al. paper cannot be examined further because neither the atomic coordinates, nor the diffraction intensities were made publicly available. The Tudor domain protein SMN has been shown to be a component of the SMN complex, which mediates the assembly of RNA-protein complexes of uridine-rich small nuclear ribonucleoproteins (UsnRNPs). Importantly, this activity is reduced in SMA patients, raising the possibility that the aetiology of SMA is linked to RNA metabolism. Structural studies on diverse components of the SMN complex, including fragments of SMN itself have contributed greatly to our understanding of the cellular UsnRNP assembly machinery. Yet full-length SMN has so far evaded structural elucidation. The Seng et al. study claimed to have closed this gap, but based on the results presented here, the only conclusion that can be drawn is that the Seng et al. study is largely invalid and should be retracted from the literature.

13.
Nat Methods ; 12(9): 859-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26237227

RESUMEN

Molecular machines or macromolecular complexes are supramolecular assemblies of biomolecules with a variety of functions. Structure determination of these complexes in a purified state is often tedious owing to their compositional complexity and the associated relative structural instability. To improve the stability of macromolecular complexes in vitro, we present a generic method that optimizes the stability, homogeneity and solubility of macromolecular complexes by sparse-matrix screening of their thermal unfolding behavior in the presence of various buffers and small molecules. The method includes the automated analysis of thermal unfolding curves based on a biophysical unfolding model for complexes. We found that under stabilizing conditions, even large multicomponent complexes reveal an almost ideal two-state unfolding behavior. We envisage an improved biochemical understanding of purified macromolecules as well as a substantial boost in successful macromolecular complex structure determination by both X-ray crystallography and cryo-electron microscopy.


Asunto(s)
Algoritmos , Modelos Químicos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Programas Informáticos , Sitios de Unión , Simulación por Computador , Cristalización , Unión Proteica , Conformación Proteica , Pliegue de Proteína
14.
BMC Med Genet ; 19(1): 81, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29776397

RESUMEN

BACKGROUND: Genetic heterogeneity and consanguineous marriages make recessive inherited hearing loss in Iran the second most common genetic disorder. Only two reported pathogenic variants (c.323G>C, p.Arg108Pro and c.419A>G, p.Tyr140Cys) in the S1PR2 gene have previously been linked to autosomal recessive hearing loss (DFNB68) in two Pakistani families. We describe a segregating novel homozygous c.323G>A, p.Arg108Gln pathogenic variant in S1PR2 that was identified in four affected individuals from a consanguineous five generation Iranian family. METHODS: Whole exome sequencing and bioinformatics analysis of 116 hearing loss-associated genes was performed in an affected individual from a five generation Iranian family. Segregation analysis and 3D protein modeling of the p.Arg108 exchange was performed. RESULTS: The two Pakistani families previously identified with S1PR2 pathogenic variants presented profound hearing loss that is also observed in the affected Iranian individuals described in the current study. Interestingly, we confirmed mixed hearing loss in one affected individual. 3D protein modeling suggests that the p.Arg108 position plays a key role in ligand receptor interaction, which is disturbed by the p.Arg108Gln change. CONCLUSION: In summary, we report the third overall mutation in S1PR2 and the first report outside the Pakistani population. Furthermore, we describe a novel variant that causes an amino acid exchange (p.Arg108Gln) in the same amino acid residue as one of the previously reported Pakistani families (p.Arg108Pro). This finding emphasizes the importance of the p.Arg108 amino acid in normal hearing and confirms and consolidates the role of S1PR2 in autosomal recessive hearing loss.


Asunto(s)
Sustitución de Aminoácidos , Arginina/genética , Pérdida Auditiva/genética , Receptores de Lisoesfingolípidos/genética , Adolescente , Consanguinidad , Femenino , Humanos , Irán , Masculino , Modelos Moleculares , Linaje , Unión Proteica , Receptores de Lisoesfingolípidos/química , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Esfingosina-1-Fosfato , Secuenciación del Exoma/métodos
15.
Chembiochem ; 18(15): 1477-1481, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28503789

RESUMEN

Galectin-1 is a tumor-associated protein recognizing the Galß1-4GlcNAc motif of cell-surface glycoconjugates. Herein, we report the stepwise expansion of a multifunctional natural scaffold based on N-acetyllactosamine (LacNAc). We obtained a LacNAc mimetic equipped with an alkynyl function on the 3'-hydroxy group of the disaccharide facing towards a binding pocket adjacent to the carbohydrate-recognition domain. It served as an anchor motif for further expansion by the Sharpless-Huisgen-Meldal reaction, which resulted in ligands with a binding mode almost identical to that of the natural carbohydrate template. X-ray crystallography provided a structural understanding of the galectin-1-ligand interactions. The results of this study enable the development of bespoke ligands for members of the galectin target family.


Asunto(s)
Amino Azúcares/química , Galectina 1/química , Amino Azúcares/síntesis química , Sitios de Unión , Calorimetría , Cristalografía por Rayos X , Humanos , Ligandos
16.
Am J Hum Genet ; 92(1): 81-7, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23246290

RESUMEN

Hypotrichosis simplex (HS) comprises a group of hereditary isolated alopecias that are characterized by a diffuse and progressive loss of hair starting in childhood and shows a wide phenotypic variability. We mapped an autosomal-dominant form of HS to chromosome 1q31.3-1q41 in a Spanish family. By direct sequencing, we identified the heterozygous mutation c.1A>G (p.Met1?) in SNRPE that results in loss of the start codon of the transcript. We identified the same mutation in a simplex HS case from the UK and an additional mutation (c.133G>A [p.Gly45Ser]) in a simplex HS case originating from Tunisia. SNRPE encodes a core protein of U snRNPs, the key factors of the pre-mRNA processing spliceosome. The missense mutation c.133G>A leads to a glycine to serine substitution and is predicted to disrupt the structure of SNRPE. Western blot analyses of HEK293T cells expressing SNRPE c.1A>G revealed an N-terminally truncated protein, and therefore the mutation might result in use of an alternative in-frame downstream start codon. Subcellular localization of mutant SNRPE by immunofluorescence analyses as well as incorporation of mutant SNRPE proteins into U snRNPs was found to be normal, suggesting that the function of U snRNPs in splicing, rather than their biogenesis, is affected. In this report we link a core component of the spliceosome to hair loss, thus adding another specific factor in the complexity of hair growth. Furthermore, our findings extend the range of human phenotypes that are linked to the splicing machinery.


Asunto(s)
Hipotricosis/genética , Proteínas Nucleares snRNP/genética , Femenino , Ligamiento Genético , Humanos , Masculino , Mutación , Linaje , Empalmosomas/genética
17.
Chembiochem ; 17(1): 33-6, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26527586

RESUMEN

Sucrose phosphorylases have been applied in the enzymatic production of glycosylated compounds for decades. However, several desirable acceptors, such as flavonoids or stilbenoids, that exhibit diverse antimicrobial, anticarcinogenic or antioxidant properties, remain poor substrates. The Q345F exchange in sucrose phosphorylase from Bifidobacterium adolescentis allows efficient glucosylation of resveratrol, (+)-catechin and (-)-epicatechin in yields of up to 97 % whereas the wild-type enzyme favours sucrose hydrolysis. Three previously undescribed products are made available. The crystal structure of the variant reveals a widened access channel with a hydrophobic aromatic surface that is likely to contribute to the improved activity towards aromatic acceptors. The generation of this channel can be explained in terms of a cascade of structural changes arising from the Q345F exchange. The observed mechanisms are likely to be relevant for the design of other tailor-made enzymes.


Asunto(s)
Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Bifidobacterium/enzimología , Dominio Catalítico , Glicosilación , Hidrólisis , Modelos Moleculares , Conformación Molecular , Sacarosa/química , Sacarosa/metabolismo
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 3): 687-96, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25760615

RESUMEN

The bacterial protein ArnA is an essential enzyme in the pathway leading to the modification of lipid A with the pentose sugar 4-amino-4-deoxy-L-arabinose. This modification confers resistance to polymyxins, which are antibiotics that are used as a last resort to treat infections with multiple drug-resistant Gram-negative bacteria. ArnA contains two domains with distinct catalytic functions: a dehydrogenase domain and a transformylase domain. The protein forms homohexamers organized as a dimer of trimers. Here, the crystal structure of apo ArnA is presented and compared with its ATP- and UDP-glucuronic acid-bound counterparts. The comparison reveals major structural rearrangements in the dehydrogenase domain that lead to the formation of a previously unobserved binding pocket at the centre of each ArnA trimer in its apo state. In the crystal structure, this pocket is occupied by a DTT molecule. It is shown that formation of the pocket is linked to a cascade of structural rearrangements that emerge from the NAD(+)-binding site. Based on these findings, a small effector molecule is postulated that binds to the central pocket and modulates the catalytic properties of ArnA. Furthermore, the discovered conformational changes provide a mechanistic explanation for the strong cooperative effect recently reported for the ArnA dehydrogenase function.


Asunto(s)
Carboxiliasas/química , Escherichia coli/enzimología , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , Carboxiliasas/genética , Carboxiliasas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , NAD/química , NAD/genética , NAD/metabolismo , Uridina Difosfato Ácido Glucurónico/química , Uridina Difosfato Ácido Glucurónico/genética , Uridina Difosfato Ácido Glucurónico/metabolismo
19.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2040-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26457428

RESUMEN

The small nuclear ribonucleoproteins (snRNPs) U1, U2, U4/6 and U5 are major constituents of the pre-mRNA processing spliceosome. They contain a common RNP core that is formed by the ordered binding of Sm proteins onto the single-stranded Sm site of the snRNA. Although spontaneous in vitro, assembly of the Sm core requires assistance from the PRMT5 and SMN complexes in vivo. To gain insight into the key steps of the assembly process, the crystal structures of two assembly intermediates of U snRNPs termed the 6S and 8S complexes have recently been reported. These multimeric protein complexes could only be crystallized after the application of various rescue strategies. The developed strategy leading to the crystallization and solution of the 8S crystal structure was subsequently used to guide a combination of rational crystal-contact optimization with surface-entropy reduction of crystals of the related 6S complex. Conversely, the resulting high-resolution 6S crystal structure was used during the restrained refinement of the 8S crystal structure.


Asunto(s)
Proteínas de Drosophila/química , Drosophila melanogaster/química , Ribonucleoproteínas Nucleares Pequeñas/química , Empalmosomas/química , Animales , Cristalización , Cristalografía por Rayos X , Entropía , Modelos Moleculares
20.
ACS Chem Biol ; 19(2): 392-406, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38317495

RESUMEN

Heat shock protein 70 (Hsp70) isoforms are key players in the regulation of protein homeostasis and cell death pathways and are therefore attractive targets in cancer research. Developing nucleotide-competitive inhibitors or allosteric modulators, however, has turned out to be very challenging for this protein family, and no Hsp70-directed therapeutics have so far become available. As the field could profit from alternative starting points for inhibitor development, we present the results of a fragment-based screening approach on a two-domain Hsp70 construct using in-solution NMR methods, together with X-ray-crystallographic investigations and mixed-solvent molecular dynamics simulations. The screening protocol resulted in hits on both domains. In particular, fragment binding in a deeply buried pocket at the substrate-binding domain could be detected. The corresponding site is known to be important for communication between the nucleotide-binding and substrate-binding domains of Hsp70 proteins. The main fragment identified at this position also offers an interesting starting point for the development of a dual Hsp70/Hsp90 inhibitor.


Asunto(s)
Proteínas HSP70 de Choque Térmico , Simulación de Dinámica Molecular , Proteínas HSP70 de Choque Térmico/metabolismo , Dominios Proteicos , Espectroscopía de Resonancia Magnética , Nucleótidos/metabolismo , Unión Proteica , Proteínas HSP90 de Choque Térmico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda